UNIST-Eunchan's picture
Update README.md
8476a65
|
raw
history blame
2.53 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
datasets:
  - arxiv-summarization
model-index:
  - name: Long-paper-summarization-pegasus-x-b
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: ccdv/arxiv-summarization
          type: ccdv/arxiv-summarization
          config: section
          split: test
          args: section
        metrics:
          - name: Rouge1
            type: rouge
            value: 35.6639
          - name: Rouge2
            type: rouge
            value: 9.81362
          - name: RougeL
            type: rouge
            value: 19.9013
          - name: RougeLSum
            type: rouge
            value: 28.1444
license: mit
language:
  - en
metrics:
  - rouge

Long-paper-summarization-pegasus-x-b

This model is a fine-tuned version of google/pegasus-x-base on the arxiv-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7262

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 390
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.401 0.33 390 2.3985
2.5444 0.67 780 2.2461
2.4849 1.0 1170 2.2690
2.5735 1.33 1560 2.3334
2.7045 1.66 1950 2.4330
2.8939 2.0 2340 2.5461
3.0773 2.33 2730 2.6502
3.2149 2.66 3120 2.7039
3.2844 3.0 3510 2.7262

Test Data Performance

{'rouge1': 0.3370780494168376, 'rouge2': 0.09813617709429612, 'rougeL': 0.19901299825841634, 'rougeLsum': 0.28144444244239153}

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2