metadata
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- arxiv-summarization
model-index:
- name: Long-paper-summarization-pegasus-x-b
results:
- task:
name: Summarization
type: summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: section
split: test
args: section
metrics:
- name: Rouge1
type: rouge
value: 35.6639
license: mit
language:
- en
metrics:
- rouge
- type: rouge
value:
'0.3370780494168376': null
name:
ROUGE-1: null
model-index:
- name: results
results:
- task:
name: Summarization
type: summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: section
split: validation
args: section
metrics:
- name: Rouge1 type: rouge value: 33.7078
- task:
name: Summarization
type: summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: section
split: validation
args: section
metrics:
Long-paper-summarization-pegasus-x-b
This model is a fine-tuned version of google/pegasus-x-base on the arxiv-summarization dataset. It achieves the following results on the evaluation set:
- Loss: 2.7262
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 390
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.401 | 0.33 | 390 | 2.3985 |
2.5444 | 0.67 | 780 | 2.2461 |
2.4849 | 1.0 | 1170 | 2.2690 |
2.5735 | 1.33 | 1560 | 2.3334 |
2.7045 | 1.66 | 1950 | 2.4330 |
2.8939 | 2.0 | 2340 | 2.5461 |
3.0773 | 2.33 | 2730 | 2.6502 |
3.2149 | 2.66 | 3120 | 2.7039 |
3.2844 | 3.0 | 3510 | 2.7262 |
Test Data Performance
{'rouge1': 0.3370780494168376, 'rouge2': 0.09813617709429612, 'rougeL': 0.19901299825841634, 'rougeLsum': 0.28144444244239153}
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2