|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- govreport-summarization |
|
model-index: |
|
- name: Pegasus-x-base-govreport-12288-1024-numepoch-10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Pegasus-x-base-govreport-12288-1024-numepoch-10 |
|
|
|
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the govreport-summarization dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6234 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Evaluation Score |
|
|
|
**'ROUGE'**: |
|
|
|
{ |
|
'rouge1': 0.5012, |
|
'rouge2': 0.2205, |
|
'rougeL': 0.2552, |
|
'rougeLsum': 0.2554 |
|
} |
|
|
|
|
|
**'BERT_SCORE'** |
|
{'f1': 0.859, |
|
'precision': 0.8619, |
|
'recall': 0.8563 |
|
} |
|
|
|
|
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.1149 | 0.37 | 100 | 1.9237 | |
|
| 1.9545 | 0.73 | 200 | 1.8380 | |
|
| 1.8835 | 1.1 | 300 | 1.7574 | |
|
| 1.862 | 1.46 | 400 | 1.7305 | |
|
| 1.8536 | 1.83 | 500 | 1.7100 | |
|
| 1.8062 | 2.19 | 600 | 1.6944 | |
|
| 1.8161 | 2.56 | 700 | 1.6882 | |
|
| 1.7611 | 2.92 | 800 | 1.6803 | |
|
| 1.7878 | 3.29 | 900 | 1.6671 | |
|
| 1.7299 | 3.65 | 1000 | 1.6599 | |
|
| 1.7636 | 4.02 | 1100 | 1.6558 | |
|
| 1.7262 | 4.38 | 1200 | 1.6547 | |
|
| 1.715 | 4.75 | 1300 | 1.6437 | |
|
| 1.7178 | 5.12 | 1400 | 1.6445 | |
|
| 1.7163 | 5.48 | 1500 | 1.6386 | |
|
| 1.7367 | 5.85 | 1600 | 1.6364 | |
|
| 1.7114 | 6.21 | 1700 | 1.6365 | |
|
| 1.6452 | 6.58 | 1800 | 1.6309 | |
|
| 1.7251 | 6.94 | 1900 | 1.6301 | |
|
| 1.6726 | 7.31 | 2000 | 1.6305 | |
|
| 1.7104 | 7.67 | 2100 | 1.6285 | |
|
| 1.6739 | 8.04 | 2200 | 1.6252 | |
|
| 1.7082 | 8.4 | 2300 | 1.6246 | |
|
| 1.6888 | 8.77 | 2400 | 1.6244 | |
|
| 1.6609 | 9.13 | 2500 | 1.6256 | |
|
| 1.6707 | 9.5 | 2600 | 1.6241 | |
|
| 1.669 | 9.86 | 2700 | 1.6234 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|