metadata
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: out/test
results: []
See axolotl config
axolotl version: 0.4.0
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: TristanBehrens/MusicCode_JSFakes_2024_Compose
type:
system_prompt: ""
system_format: ""
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out/test
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
eval_sample_packing: False
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
out/test
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1833 | 0.06 | 1 | 0.1833 |
0.175 | 0.29 | 5 | 0.1681 |
0.1172 | 0.57 | 10 | 0.1097 |
0.0917 | 0.86 | 15 | 0.0878 |
0.0779 | 1.11 | 20 | 0.0750 |
0.0706 | 1.4 | 25 | 0.0682 |
0.0642 | 1.69 | 30 | 0.0635 |
0.0617 | 1.97 | 35 | 0.0609 |
0.0602 | 2.21 | 40 | 0.0588 |
0.0574 | 2.5 | 45 | 0.0573 |
0.0565 | 2.79 | 50 | 0.0563 |
0.0561 | 3.03 | 55 | 0.0558 |
0.0566 | 3.31 | 60 | 0.0554 |
0.0551 | 3.6 | 65 | 0.0553 |
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0