base_model: nbeerbower/Mistral-Small-Drummer-22B
datasets:
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
library_name: transformers
license: other
license_name: mrl
license_link: https://mistral.ai/licenses/MRL-0.1.md
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: Mistral-Small-Drummer-22B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 63.31
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 40.12
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.69
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.42
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.8
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 34.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Mistral-Small-Drummer-22B
name: Open LLM Leaderboard
Triangle104/Mistral-Small-Drummer-22B-Q6_K-GGUF
This model was converted to GGUF format from nbeerbower/Mistral-Small-Drummer-22B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
mistralai/Mistral-Small-Instruct-2409 finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo. Method
ORPO tuned with 2xA40 on RunPod for 1 epoch.
learning_rate=4e-6, lr_scheduler_type="linear", beta=0.1, per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=1,
Dataset was prepared using Mistral-Small Instruct format.
Fine-tune Llama 3 with ORPO Open LLM Leaderboard Evaluation Results
Detailed results can be found here Metric Value Avg. 29.45 IFEval (0-Shot) 63.31 BBH (3-Shot) 40.12 MATH Lvl 5 (4-Shot) 16.69 GPQA (0-shot) 12.42 MuSR (0-shot) 9.80 MMLU-PRO (5-shot) 34.39
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Mistral-Small-Drummer-22B-Q6_K-GGUF --hf-file mistral-small-drummer-22b-q6_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Mistral-Small-Drummer-22B-Q6_K-GGUF --hf-file mistral-small-drummer-22b-q6_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Mistral-Small-Drummer-22B-Q6_K-GGUF --hf-file mistral-small-drummer-22b-q6_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Mistral-Small-Drummer-22B-Q6_K-GGUF --hf-file mistral-small-drummer-22b-q6_k.gguf -c 2048