tigerbot-7b-sft-v1 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
2e709f7 verified
|
raw
history blame
5.43 kB
---
license: apache-2.0
model-index:
- name: tigerbot-7b-sft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 41.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 60.56
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 58.18
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.54
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 6.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
name: Open LLM Leaderboard
---
<div style="width: 100%;">
<img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;">
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>
## Github
https://github.com/TigerResearch/TigerBot
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import infer_auto_device_map, dispatch_model
from accelerate.utils import get_balanced_memory
tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-7b-sft-v1")
model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-7b-sft-v1")
max_memory = get_balanced_memory(model)
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"])
model = dispatch_model(model, device_map=device_map, offload_buffers=True)
device = torch.cuda.current_device()
tok_ins = "\n\n### Instruction:\n"
tok_res = "\n\n### Response:\n"
prompt_input = tok_ins + "{instruction}" + tok_res
input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]"
input_text = prompt_input.format_map({'instruction': input_text})
max_input_length = 512
max_generate_length = 1024
generation_kwargs = {
"top_p": 0.95,
"temperature": 0.8,
"max_length": max_generate_length,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id,
"early_stopping": True,
"no_repeat_ngram_size": 4,
}
inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(**inputs, **generation_kwargs)
answer = ''
for tok_id in output[0][inputs['input_ids'].shape[1]:]:
if tok_id != tokenizer.eos_token_id:
answer += tokenizer.decode(tok_id)
print(answer)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-7b-sft)
| Metric |Value|
|---------------------------------|----:|
|Avg. |43.35|
|AI2 Reasoning Challenge (25-Shot)|41.64|
|HellaSwag (10-Shot) |60.56|
|MMLU (5-Shot) |29.89|
|TruthfulQA (0-shot) |58.18|
|Winogrande (5-shot) |63.54|
|GSM8k (5-shot) | 6.29|