|
--- |
|
license: apache-2.0 |
|
model-index: |
|
- name: tigerbot-7b-sft |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 41.64 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 60.56 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 29.89 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 58.18 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.54 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 6.29 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft |
|
name: Open LLM Leaderboard |
|
--- |
|
<div style="width: 100%;"> |
|
<img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> |
|
</div> |
|
<p align="center"> |
|
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> |
|
</p> |
|
<p align="center"> |
|
🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a> |
|
</p> |
|
|
|
## Github |
|
|
|
https://github.com/TigerResearch/TigerBot |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from accelerate import infer_auto_device_map, dispatch_model |
|
from accelerate.utils import get_balanced_memory |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") |
|
|
|
max_memory = get_balanced_memory(model) |
|
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"]) |
|
model = dispatch_model(model, device_map=device_map, offload_buffers=True) |
|
|
|
device = torch.cuda.current_device() |
|
|
|
|
|
tok_ins = "\n\n### Instruction:\n" |
|
tok_res = "\n\n### Response:\n" |
|
prompt_input = tok_ins + "{instruction}" + tok_res |
|
|
|
input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]" |
|
input_text = prompt_input.format_map({'instruction': input_text}) |
|
|
|
max_input_length = 512 |
|
max_generate_length = 1024 |
|
generation_kwargs = { |
|
"top_p": 0.95, |
|
"temperature": 0.8, |
|
"max_length": max_generate_length, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"early_stopping": True, |
|
"no_repeat_ngram_size": 4, |
|
} |
|
|
|
inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
output = model.generate(**inputs, **generation_kwargs) |
|
answer = '' |
|
for tok_id in output[0][inputs['input_ids'].shape[1]:]: |
|
if tok_id != tokenizer.eos_token_id: |
|
answer += tokenizer.decode(tok_id) |
|
print(answer) |
|
``` |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-7b-sft) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |43.35| |
|
|AI2 Reasoning Challenge (25-Shot)|41.64| |
|
|HellaSwag (10-Shot) |60.56| |
|
|MMLU (5-Shot) |29.89| |
|
|TruthfulQA (0-shot) |58.18| |
|
|Winogrande (5-shot) |63.54| |
|
|GSM8k (5-shot) | 6.29| |
|
|
|
|