wav2vec2-vivos / README.md
Thienpkae's picture
End of training
71fda20 verified
|
raw
history blame
2.31 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: wav2vec2-vivos
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.2342930262316059

wav2vec2-vivos

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4598
  • Wer: 0.2343

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.8271 2.0 146 3.8747 1.0
3.4616 4.0 292 3.5849 1.0
3.35 6.0 438 2.6294 0.9997
1.1993 8.0 584 0.6472 0.4255
0.4734 10.0 730 0.5342 0.3258
0.3156 12.0 876 0.4651 0.2758
0.2392 14.0 1022 0.4690 0.2573
0.2183 16.0 1168 0.4601 0.2434
0.164 18.0 1314 0.4619 0.2379
0.1452 20.0 1460 0.4598 0.2343

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1