wav2vec2-vivos-asr / README.md
Thienpkae's picture
End of training
770cf2f verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: wav2vec2-vivos-asr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.4232335172051484

wav2vec2-vivos-asr

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6926
  • Wer: 0.4232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.3715 2.0 146 3.6727 1.0
3.4482 4.0 292 3.5947 1.0
3.4187 6.0 438 3.5349 1.0
3.3922 8.0 584 3.4713 1.0
3.349 10.0 730 3.3434 1.0
2.1445 12.0 876 1.3684 0.7849
1.0296 14.0 1022 0.9135 0.5588
0.7796 16.0 1168 0.7838 0.4871
0.609 18.0 1314 0.7060 0.4372
0.5388 20.0 1460 0.6926 0.4232

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1