wav2vec2-vivos-asr / README.md
Thienpkae's picture
End of training
48c5874 verified
|
raw
history blame
2.84 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: wav2vec2-vivos-asr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.46007853403141363

Visualize in Weights & Biases

wav2vec2-vivos-asr

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9791
  • Wer: 0.4601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0539 2.0 292 3.6334 1.0
3.4484 4.0 584 3.5348 1.0
3.2755 6.0 876 2.4805 0.9952
1.6061 8.0 1168 1.2597 0.7021
1.0363 10.0 1460 1.0996 0.6158
0.8403 12.0 1752 0.9858 0.5573
0.726 14.0 2044 0.9625 0.5302
0.6721 16.0 2336 0.9326 0.5124
0.5697 18.0 2628 0.9399 0.5012
0.5168 20.0 2920 0.9625 0.4930
0.4663 22.0 3212 0.9432 0.4751
0.4408 24.0 3504 0.9822 0.4723
0.4231 26.0 3796 0.9629 0.4643
0.3855 28.0 4088 0.9744 0.4639
0.3671 30.0 4380 0.9791 0.4601

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1