Thienpkae's picture
Upload tokenizer
7ac8664 verified
|
raw
history blame
2.25 kB
metadata
base_model: facebook/wav2vec2-base
datasets:
  - common_voice_13_0
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xls-r-vi-colab
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: vi
          split: test[:50%]
          args: vi
        metrics:
          - type: wer
            value: 0.9155054191550542
            name: Wer

wav2vec2-large-xls-r-vi-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0995
  • Wer: 0.9155
  • Cer: 0.4345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
14.8797 4.4444 200 4.6129 1.0 1.0
3.9436 8.8889 400 3.5521 1.0 1.0
3.4845 13.3333 600 3.4997 1.0 1.0
3.1358 17.7778 800 2.7899 1.0011 0.7023
2.0727 22.2222 1000 2.2606 0.9600 0.4680
1.5218 26.6667 1200 2.0995 0.9155 0.4345

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1