File size: 32,828 Bytes
99560df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc3cbd
 
99560df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
---
base_model: HuggingFaceH4/zephyr-7b-beta
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
inference: false
language:
- en
license: mit
model-index:
- name: zephyr-7b-beta
  results: []
model_creator: Hugging Face H4
model_name: Zephyr 7B Beta
model_type: mistral
prompt_template: '<|system|>

  </s>

  <|user|>

  {prompt}</s>

  <|assistant|>

  '
quantized_by: TheBloke
tags:
- generated_from_trainer
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Zephyr 7B Beta - AWQ
- Model creator: [Hugging Face H4](https://huggingface.co/HuggingFaceH4)
- Original model: [Zephyr 7B Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)

<!-- description start -->
## Description

This repo contains AWQ model files for [Hugging Face H4's Zephyr 7B Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).

These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/zephyr-7B-beta-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF)
* [Hugging Face H4's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Zephyr

```
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/zephyr-7B-beta-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/zephyr-7B-beta-AWQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `zephyr-7B-beta-AWQ`
7. Select **Loader: AutoAWQ**.
8. Click Load, and the model will load and is now ready for use.
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_AWQ.md-text-generation-webui end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Multi-user inference server: vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the `--quantization awq` parameter.

For example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/zephyr-7B-beta-AWQ --quantization awq
```

- When using vLLM from Python code, again set `quantization=awq`.

For example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/zephyr-7B-beta-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-tgi start -->
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/zephyr-7B-beta-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)
```
<!-- README_AWQ.md-use-from-tgi end -->

<!-- README_AWQ.md-use-from-python start -->
## Inference from Python code using AutoAWQ

### Install the AutoAWQ package

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### AutoAWQ example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/zephyr-7B-beta-AWQ"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)

prompt = "Tell me about AI"
prompt_template=f'''<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
'''

print("*** Running model.generate:")

token_input = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    token_input,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("LLM output: ", text_output)

"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
"""
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with:

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.

<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Hugging Face H4's Zephyr 7B Beta


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Model Card for Zephyr 7B β

Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).


## Model description

- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
- **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org

## Performance

At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:

| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat |  7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B|  - | 6.84 |-|
| Zephyr-7b-α |7B|  dDPO| 6.88| -|
| **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
| Falcon-Instruct |  40B |dSFT |5.17 |45.71|
| Guanaco | 65B |  SFT |6.41| 71.80|
| Llama2-Chat |  70B |RLHF |6.86| 92.66|
| Vicuna v1.3 |  33B |dSFT |7.12 |88.99|
| WizardLM v1.0 |  70B |dSFT |7.71 |-|
| Xwin-LM v0.1 |   70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 |  - |RLHF |8.06| 91.36|
| GPT-4 |  -| RLHF |8.99| 95.28|

In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png)

However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.


## Intended uses & limitations

The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. 
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. 

You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.


## Training and evaluation data

During DPO training, this model achieves the following results on the evaluation set:

- Loss: 0.7496
- Rewards/chosen: -4.5221
- Rewards/rejected: -8.3184
- Rewards/accuracies: 0.7812
- Rewards/margins: 3.7963
- Logps/rejected: -340.1541
- Logps/chosen: -299.4561
- Logits/rejected: -2.3081
- Logits/chosen: -2.3531


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

The table below shows the full set of DPO training metrics:


| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6284        | 0.05  | 100  | 0.6098          | 0.0425         | -0.1872          | 0.7344             | 0.2297          | -258.8416      | -253.8099    | -2.7976         | -2.8234       |
| 0.4908        | 0.1   | 200  | 0.5426          | -0.0279        | -0.6842          | 0.75               | 0.6563          | -263.8124      | -254.5145    | -2.7719         | -2.7960       |
| 0.5264        | 0.15  | 300  | 0.5324          | 0.0414         | -0.9793          | 0.7656             | 1.0207          | -266.7627      | -253.8209    | -2.7892         | -2.8122       |
| 0.5536        | 0.21  | 400  | 0.4957          | -0.0185        | -1.5276          | 0.7969             | 1.5091          | -272.2460      | -254.4203    | -2.8542         | -2.8764       |
| 0.5362        | 0.26  | 500  | 0.5031          | -0.2630        | -1.5917          | 0.7812             | 1.3287          | -272.8869      | -256.8653    | -2.8702         | -2.8958       |
| 0.5966        | 0.31  | 600  | 0.5963          | -0.2993        | -1.6491          | 0.7812             | 1.3499          | -273.4614      | -257.2279    | -2.8778         | -2.8986       |
| 0.5014        | 0.36  | 700  | 0.5382          | -0.2859        | -1.4750          | 0.75               | 1.1891          | -271.7204      | -257.0942    | -2.7659         | -2.7869       |
| 0.5334        | 0.41  | 800  | 0.5677          | -0.4289        | -1.8968          | 0.7969             | 1.4679          | -275.9378      | -258.5242    | -2.7053         | -2.7265       |
| 0.5251        | 0.46  | 900  | 0.5772          | -0.2116        | -1.3107          | 0.7344             | 1.0991          | -270.0768      | -256.3507    | -2.8463         | -2.8662       |
| 0.5205        | 0.52  | 1000 | 0.5262          | -0.3792        | -1.8585          | 0.7188             | 1.4793          | -275.5552      | -258.0276    | -2.7893         | -2.7979       |
| 0.5094        | 0.57  | 1100 | 0.5433          | -0.6279        | -1.9368          | 0.7969             | 1.3089          | -276.3377      | -260.5136    | -2.7453         | -2.7536       |
| 0.5837        | 0.62  | 1200 | 0.5349          | -0.3780        | -1.9584          | 0.7656             | 1.5804          | -276.5542      | -258.0154    | -2.7643         | -2.7756       |
| 0.5214        | 0.67  | 1300 | 0.5732          | -1.0055        | -2.2306          | 0.7656             | 1.2251          | -279.2761      | -264.2903    | -2.6986         | -2.7113       |
| 0.6914        | 0.72  | 1400 | 0.5137          | -0.6912        | -2.1775          | 0.7969             | 1.4863          | -278.7448      | -261.1467    | -2.7166         | -2.7275       |
| 0.4655        | 0.77  | 1500 | 0.5090          | -0.7987        | -2.2930          | 0.7031             | 1.4943          | -279.8999      | -262.2220    | -2.6651         | -2.6838       |
| 0.5731        | 0.83  | 1600 | 0.5312          | -0.8253        | -2.3520          | 0.7812             | 1.5268          | -280.4902      | -262.4876    | -2.6543         | -2.6728       |
| 0.5233        | 0.88  | 1700 | 0.5206          | -0.4573        | -2.0951          | 0.7812             | 1.6377          | -277.9205      | -258.8084    | -2.6870         | -2.7097       |
| 0.5593        | 0.93  | 1800 | 0.5231          | -0.5508        | -2.2000          | 0.7969             | 1.6492          | -278.9703      | -259.7433    | -2.6221         | -2.6519       |
| 0.4967        | 0.98  | 1900 | 0.5290          | -0.5340        | -1.9570          | 0.8281             | 1.4230          | -276.5395      | -259.5749    | -2.6564         | -2.6878       |
| 0.0921        | 1.03  | 2000 | 0.5368          | -1.1376        | -3.1615          | 0.7812             | 2.0239          | -288.5854      | -265.6111    | -2.6040         | -2.6345       |
| 0.0733        | 1.08  | 2100 | 0.5453          | -1.1045        | -3.4451          | 0.7656             | 2.3406          | -291.4208      | -265.2799    | -2.6289         | -2.6595       |
| 0.0972        | 1.14  | 2200 | 0.5571          | -1.6915        | -3.9823          | 0.8125             | 2.2908          | -296.7934      | -271.1505    | -2.6471         | -2.6709       |
| 0.1058        | 1.19  | 2300 | 0.5789          | -1.0621        | -3.8941          | 0.7969             | 2.8319          | -295.9106      | -264.8563    | -2.5527         | -2.5798       |
| 0.2423        | 1.24  | 2400 | 0.5455          | -1.1963        | -3.5590          | 0.7812             | 2.3627          | -292.5599      | -266.1981    | -2.5414         | -2.5784       |
| 0.1177        | 1.29  | 2500 | 0.5889          | -1.8141        | -4.3942          | 0.7969             | 2.5801          | -300.9120      | -272.3761    | -2.4802         | -2.5189       |
| 0.1213        | 1.34  | 2600 | 0.5683          | -1.4608        | -3.8420          | 0.8125             | 2.3812          | -295.3901      | -268.8436    | -2.4774         | -2.5207       |
| 0.0889        | 1.39  | 2700 | 0.5890          | -1.6007        | -3.7337          | 0.7812             | 2.1330          | -294.3068      | -270.2423    | -2.4123         | -2.4522       |
| 0.0995        | 1.45  | 2800 | 0.6073          | -1.5519        | -3.8362          | 0.8281             | 2.2843          | -295.3315      | -269.7538    | -2.4685         | -2.5050       |
| 0.1145        | 1.5   | 2900 | 0.5790          | -1.7939        | -4.2876          | 0.8438             | 2.4937          | -299.8461      | -272.1744    | -2.4272         | -2.4674       |
| 0.0644        | 1.55  | 3000 | 0.5735          | -1.7285        | -4.2051          | 0.8125             | 2.4766          | -299.0209      | -271.5201    | -2.4193         | -2.4574       |
| 0.0798        | 1.6   | 3100 | 0.5537          | -1.7226        | -4.2850          | 0.8438             | 2.5624          | -299.8200      | -271.4610    | -2.5367         | -2.5696       |
| 0.1013        | 1.65  | 3200 | 0.5575          | -1.5715        | -3.9813          | 0.875              | 2.4098          | -296.7825      | -269.9498    | -2.4926         | -2.5267       |
| 0.1254        | 1.7   | 3300 | 0.5905          | -1.6412        | -4.4703          | 0.8594             | 2.8291          | -301.6730      | -270.6473    | -2.5017         | -2.5340       |
| 0.085         | 1.76  | 3400 | 0.6133          | -1.9159        | -4.6760          | 0.8438             | 2.7601          | -303.7296      | -273.3941    | -2.4614         | -2.4960       |
| 0.065         | 1.81  | 3500 | 0.6074          | -1.8237        | -4.3525          | 0.8594             | 2.5288          | -300.4951      | -272.4724    | -2.4597         | -2.5004       |
| 0.0755        | 1.86  | 3600 | 0.5836          | -1.9252        | -4.4005          | 0.8125             | 2.4753          | -300.9748      | -273.4872    | -2.4327         | -2.4716       |
| 0.0746        | 1.91  | 3700 | 0.5789          | -1.9280        | -4.4906          | 0.8125             | 2.5626          | -301.8762      | -273.5149    | -2.4686         | -2.5115       |
| 0.1348        | 1.96  | 3800 | 0.6015          | -1.8658        | -4.2428          | 0.8281             | 2.3769          | -299.3976      | -272.8936    | -2.4943         | -2.5393       |
| 0.0217        | 2.01  | 3900 | 0.6122          | -2.3335        | -4.9229          | 0.8281             | 2.5894          | -306.1988      | -277.5699    | -2.4841         | -2.5272       |
| 0.0219        | 2.07  | 4000 | 0.6522          | -2.9890        | -6.0164          | 0.8281             | 3.0274          | -317.1334      | -284.1248    | -2.4105         | -2.4545       |
| 0.0119        | 2.12  | 4100 | 0.6922          | -3.4777        | -6.6749          | 0.7969             | 3.1972          | -323.7187      | -289.0121    | -2.4272         | -2.4699       |
| 0.0153        | 2.17  | 4200 | 0.6993          | -3.2406        | -6.6775          | 0.7969             | 3.4369          | -323.7453      | -286.6413    | -2.4047         | -2.4465       |
| 0.011         | 2.22  | 4300 | 0.7178          | -3.7991        | -7.4397          | 0.7656             | 3.6406          | -331.3667      | -292.2260    | -2.3843         | -2.4290       |
| 0.0072        | 2.27  | 4400 | 0.6840          | -3.3269        | -6.8021          | 0.8125             | 3.4752          | -324.9908      | -287.5042    | -2.4095         | -2.4536       |
| 0.0197        | 2.32  | 4500 | 0.7013          | -3.6890        | -7.3014          | 0.8125             | 3.6124          | -329.9841      | -291.1250    | -2.4118         | -2.4543       |
| 0.0182        | 2.37  | 4600 | 0.7476          | -3.8994        | -7.5366          | 0.8281             | 3.6372          | -332.3356      | -293.2291    | -2.4163         | -2.4565       |
| 0.0125        | 2.43  | 4700 | 0.7199          | -4.0560        | -7.5765          | 0.8438             | 3.5204          | -332.7345      | -294.7952    | -2.3699         | -2.4100       |
| 0.0082        | 2.48  | 4800 | 0.7048          | -3.6613        | -7.1356          | 0.875              | 3.4743          | -328.3255      | -290.8477    | -2.3925         | -2.4303       |
| 0.0118        | 2.53  | 4900 | 0.6976          | -3.7908        | -7.3152          | 0.8125             | 3.5244          | -330.1224      | -292.1431    | -2.3633         | -2.4047       |
| 0.0118        | 2.58  | 5000 | 0.7198          | -3.9049        | -7.5557          | 0.8281             | 3.6508          | -332.5271      | -293.2844    | -2.3764         | -2.4194       |
| 0.006         | 2.63  | 5100 | 0.7506          | -4.2118        | -7.9149          | 0.8125             | 3.7032          | -336.1194      | -296.3530    | -2.3407         | -2.3860       |
| 0.0143        | 2.68  | 5200 | 0.7408          | -4.2433        | -7.9802          | 0.8125             | 3.7369          | -336.7721      | -296.6682    | -2.3509         | -2.3946       |
| 0.0057        | 2.74  | 5300 | 0.7552          | -4.3392        | -8.0831          | 0.7969             | 3.7439          | -337.8013      | -297.6275    | -2.3388         | -2.3842       |
| 0.0138        | 2.79  | 5400 | 0.7404          | -4.2395        | -7.9762          | 0.8125             | 3.7367          | -336.7322      | -296.6304    | -2.3286         | -2.3737       |
| 0.0079        | 2.84  | 5500 | 0.7525          | -4.4466        | -8.2196          | 0.7812             | 3.7731          | -339.1662      | -298.7007    | -2.3200         | -2.3641       |
| 0.0077        | 2.89  | 5600 | 0.7520          | -4.5586        | -8.3485          | 0.7969             | 3.7899          | -340.4545      | -299.8206    | -2.3078         | -2.3517       |
| 0.0094        | 2.94  | 5700 | 0.7527          | -4.5542        | -8.3509          | 0.7812             | 3.7967          | -340.4790      | -299.7773    | -2.3062         | -2.3510       |
| 0.0054        | 2.99  | 5800 | 0.7520          | -4.5169        | -8.3079          | 0.7812             | 3.7911          | -340.0493      | -299.4038    | -2.3081         | -2.3530       |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0

## Citation

If you find Zephyr-7B-β is useful in your work, please cite it with:

```
@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```