TheBloke's picture
Initial GPTQ model commit
b975623
|
raw
history blame
8.52 kB
metadata
inference: false
license: other
TheBlokeAI

LmSys' Vicuna 13B v1.3 GPTQ

These files are GPTQ 4bit model files for LmSys' Vicuna 13B v1.3.

It is the result of quantising to 4bit using GPTQ-for-LLaMa.

Repositories available

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/vicuna-13b-v1.3.0-GPTQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done"
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: vicuna-13b-v1.3.0-GPTQ
  7. The model will automatically load, and is now ready for use!
  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ installed:

pip install auto-gptq

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import argparse

model_name_or_path = "TheBloke/vicuna-13b-v1.3.0-GPTQ"
model_basename = "vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

# Note: check the prompt template is correct for this model.
prompt = "Tell me about AI"
prompt_template=f'''USER: {prompt}
ASSISTANT:'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Provided files

vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order.safetensors

This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.

It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.

  • vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order.safetensors
    • Works with AutoGPTQ in CUDA or Triton modes.
    • LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ.
    • Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
    • Works with text-generation-webui, including one-click-installers.
    • Parameters: Groupsize = 128. Act Order / desc_act = False.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

Patreon special mentions: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.

Thank you to all my generous patrons and donaters!

Original model card: LmSys' Vicuna 13B v1.3

Vicuna Model Card

Model Details

Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.

  • Developed by: LMSYS
  • Model type: An auto-regressive language model based on the transformer architecture.
  • License: Non-commercial license
  • Finetuned from model: LLaMA.

Model Sources

Uses

The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.

How to Get Started with the Model

Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.

Training Details

Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this paper.

Evaluation

Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this paper.

Difference between different versions of Vicuna

See vicuna_weights_version.md