med42-70B-GGUF / README.md
TheBloke's picture
Upload README.md
a84a16b
---
base_model: m42-health/med42-70b
inference: false
language:
- en
license: other
license_name: med42
model_creator: M42 Health
model_name: Med42 70B
model_type: llama
pipeline_tag: text-generation
prompt_template: '<|system|>: You are a helpful medical assistant created by M42 Health
in the UAE.
<|prompter|>:{prompt}
<|assistant|>:
'
quantized_by: TheBloke
tags:
- m42
- health
- healthcare
- clinical-llm
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Med42 70B - GGUF
- Model creator: [M42 Health](https://huggingface.co/m42-health)
- Original model: [Med42 70B](https://huggingface.co/m42-health/med42-70b)
<!-- description start -->
## Description
This repo contains GGUF format model files for [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b).
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplate list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/med42-70B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/med42-70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/med42-70B-GGUF)
* [M42 Health's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/m42-health/med42-70b)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Med42
```
<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
<|prompter|>:{prompt}
<|assistant|>:
```
<!-- prompt-template end -->
<!-- licensing start -->
## Licensing
The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b).
<!-- licensing end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [med42-70b.Q2_K.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [med42-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [med42-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [med42-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [med42-70b.Q4_0.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [med42-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [med42-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [med42-70b.Q5_0.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [med42-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [med42-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| med42-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| med42-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
### Q6_K and Q8_0 files are split and require joining
**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
<details>
<summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
### q6_K
Please download:
* `med42-70b.Q6_K.gguf-split-a`
* `med42-70b.Q6_K.gguf-split-b`
### q8_0
Please download:
* `med42-70b.Q8_0.gguf-split-a`
* `med42-70b.Q8_0.gguf-split-b`
To join the files, do the following:
Linux and macOS:
```
cat med42-70b.Q6_K.gguf-split-* > med42-70b.Q6_K.gguf && rm med42-70b.Q6_K.gguf-split-*
cat med42-70b.Q8_0.gguf-split-* > med42-70b.Q8_0.gguf && rm med42-70b.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B med42-70b.Q6_K.gguf-split-a + med42-70b.Q6_K.gguf-split-b med42-70b.Q6_K.gguf
del med42-70b.Q6_K.gguf-split-a med42-70b.Q6_K.gguf-split-b
COPY /B med42-70b.Q8_0.gguf-split-a + med42-70b.Q8_0.gguf-split-b med42-70b.Q8_0.gguf
del med42-70b.Q8_0.gguf-split-a med42-70b.Q8_0.gguf-split-b
```
</details>
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/med42-70B-GGUF and below it, a specific filename to download, such as: med42-70b.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/med42-70B-GGUF med42-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/med42-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/med42-70B-GGUF med42-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m med42-70b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.\n<|prompter|>:{prompt}\n<|assistant|>:"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/med42-70B-GGUF", model_file="med42-70b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: M42 Health's Med42 70B
# **Med42 - Clinical Large Language Model**
Med42 is an open-access clinical large language model (LLM) developed by M42 to expand access to medical knowledge. Built off LLaMA-2 and comprising 70 billion parameters, this generative AI system provides high-quality answers to medical questions.
## Model Details
*Note: Use of this model is governed by the M42 Health license. In order to download the model weights (and tokenizer), please read the [Med42 License](https://huggingface.co/spaces/m42-health/License) and accept our License by requesting access here.*
Beginning with the base LLaMa-2 model, Med42 was instruction-tuned on a dataset of ~250M tokens compiled from different open-access sources, including medical flashcards, exam questions, and open-domain dialogues.
**Model Developers:** M42 Health AI Team
**Finetuned from model:** Llama-2 - 70B
**Context length:** 4k tokens
**Input:** Text only data
**Output:** Model generates text only
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we enhance model's performance.
**License:** A custom license is available [here](https://huggingface.co/spaces/m42-health/License)
**Research Paper:** TBA
## Intended Use
Med42 is being made available for further testing and assessment as an AI assistant to enhance clinical decision-making and enhance access to an LLM for healthcare use. Potential use cases include:
- Medical question answering
- Patient record summarization
- Aiding medical diagnosis
- General health Q&A
To get the expected features and performance for the model, a specific formatting needs to be followed, including the `<|system|>`, `<|prompter|>` and `<|assistant|>` tags.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name_or_path = "m42-health/med42-70b"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
prompt = "What are the symptoms of diabetes ?"
prompt_template=f'''
<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
<|prompter|>:{prompt}
<|assistant|>:
'''
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True,eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
print(tokenizer.decode(output[0]))
```
## Hardware and Software
The training process was performed on the Condor Galaxy 1 (CG-1) supercomputer platform.
## Evaluation Results
Med42 achieves achieves competitive performance on various medical benchmarks, including MedQA, MedMCQA, PubMedQA, HeadQA, and Measuring Massive Multitask Language Understanding (MMLU) clinical topics. For all evaluations reported so far, we use [EleutherAI's evaluation harness library](https://github.com/EleutherAI/lm-evaluation-harness) and report zero-shot accuracies (except otherwise stated). We compare the performance with that reported for other models (ClinicalCamel-70B, GPT-3.5, GPT-4.0, Med-PaLM 2).
|Dataset|Med42|ClinicalCamel-70B|GPT-3.5|GPT-4.0|Med-PaLM-2 (5-shot)*|
|---|---|---|---|---|---|
|MMLU Clinical Knowledge|74.3|69.8|69.8|86.0|88.3|
|MMLU College Biology|84.0|79.2|72.2|95.1|94.4|
|MMLU College Medicine|68.8|67.0|61.3|76.9|80.9|
|MMLU Medical Genetics|86.0|69.0|70.0|91.0|90.0|
|MMLU Professional Medicine|79.8|71.3|70.2|93.0|95.2|
|MMLU Anatomy|67.4|62.2|56.3|80.0|77.8|
|MedMCQA|60.9|47.0|50.1|69.5|71.3|
|MedQA|61.5|53.4|50.8|78.9|79.7|
|USMLE Self-Assessment|71.7|-|49.1|83.8|-|
|USMLE Sample Exam|72.0|54.3|56.9|84.3|-|
**We note that 0-shot performance is not reported for Med-PaLM 2. Further details can be found at [https://github.com/m42health/med42](https://github.com/m42health/med42)*.
### Key performance metrics:
- Med42 achieves a 72% accuracy on the US Medical Licensing Examination (USMLE) sample exam, surpassing the prior state of the art among openly available medical LLMs.
- 61.5% on MedQA dataset (compared to 50.8% for GPT-3.5)
- Consistently higher performance on MMLU clinical topics compared to GPT-3.5.
## Limitations & Safe Use
- Med42 is not ready for real clinical use. Extensive human evaluation is undergoing as it is required to ensure safety.
- Potential for generating incorrect or harmful information.
- Risk of perpetuating biases in training data.
Use this model responsibly! Do not rely on it for medical usage without rigorous safety testing.
## Accessing Med42 and Reporting Issues
Please report any software "bug" or other problems through one of the following means:
- Reporting issues with the model: [https://github.com/m42health/med42](https://github.com/m42health/med42)
- Reporting risky content generated by the model, bugs and/or any security concerns: [https://forms.office.com/r/YMJu3kcKat](https://forms.office.com/r/YMJu3kcKat)
- M42’s privacy policy available at [https://m42.ae/privacy-policy/](https://m42.ae/privacy-policy/)
- Reporting violations of the Acceptable Use Policy or unlicensed uses of Med42: <[email protected]>
<!-- original-model-card end -->