Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Fin Llama 33B - GPTQ

Description

This repo contains GPTQ model files for Bavest's Fin Llama 33B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Repositories available

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the main branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 None Yes 0.01 wikitext 2048 16.94 GB Yes 4-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-4bit-32g-actorder_True 4 32 Yes 0.01 wikitext 2048 19.44 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-4bit-64g-actorder_True 4 64 Yes 0.01 wikitext 2048 18.18 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy.
gptq-4bit-128g-actorder_True 4 128 Yes 0.01 wikitext 2048 17.55 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-8bit--1g-actorder_True 8 None Yes 0.01 wikitext 2048 32.99 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_False 8 128 No 0.01 wikitext 2048 33.73 GB No 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed.
gptq-3bit--1g-actorder_True 3 None Yes 0.01 wikitext 2048 12.92 GB No 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g.
gptq-3bit-128g-actorder_False 3 128 No 0.01 wikitext 2048 13.51 GB No 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/fin-llama-33B-GPTQ:main
  • With Git, you can clone a branch with:
git clone --single-branch --branch main https://huggingface.co/TheBloke/fin-llama-33B-GPTQ
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/fin-llama-33B-GPTQ.
  • To download from a specific branch, enter for example TheBloke/fin-llama-33B-GPTQ:main
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done".
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: fin-llama-33B-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .

For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:

pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git

You can then use the following code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/fin-llama-33B-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.

ExLlama is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Bavest's Fin Llama 33B

FIN-LLAMA

Efficient Finetuning of Quantized LLMs for Finance

Adapter Weights | Dataset

Installation

To load models in 4bits with transformers and bitsandbytes, you have to install accelerate and transformers from source and make sure you have the latest version of the bitsandbytes library (0.39.0).

pip3 install -r requirements.txt

Other dependencies

If you want to finetune the model on a new instance. You could run the setup.sh to install the python and cuda package.

bash scripts/setup.sh

Finetuning

bash script/finetune.sh

Usage

Quantization parameters are controlled from the BitsandbytesConfig

  • Loading in 4 bits is activated through load_in_4bit
  • The datatype used for the linear layer computations with bnb_4bit_compute_dtype
  • Nested quantization is activated through bnb_4bit_use_double_quant
  • The datatype used for qunatization is specified with bnb_4bit_quant_type. Note that there are two supported quantization datatypes fp4 (four bit float) and nf4 (normal four bit float). The latter is theoretically optimal for normally distributed weights and we recommend using nf4.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

pretrained_model_name_or_path = "bavest/fin-llama-33b-merge"
model = AutoModelForCausalLM.from_pretrained(
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    load_in_4bit=True,
    device_map='auto',
    torch_dtype=torch.bfloat16,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4'
    ),
)

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)

question = "What is the market cap of apple?"
input = "" # context if needed

prompt = f"""
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's question.
'### Instruction:\n{question}\n\n### Input:{input}\n""\n\n### Response: 
"""

input_ids = tokenizer.encode(prompt, return_tensors="pt").to('cuda:0')

with torch.no_grad():
    generated_ids = model.generate(
        input_ids,
        do_sample=True,
        top_p=0.9,
        temperature=0.8,
        max_length=128
    )

generated_text = tokenizer.decode(
    [el.item() for el in generated_ids[0]], skip_special_tokens=True
)

Dataset for FIN-LLAMA

The dataset is released under bigscience-openrail-m. You can find the dataset used to train FIN-LLAMA models on HF at bavest/fin-llama-dataset.

Known Issues and Limitations

Here a list of known issues and bugs. If your issue is not reported here, please open a new issue and describe the problem. See QLORA for any other limitations.

  1. 4-bit inference is slow. Currently, our 4-bit inference implementation is not yet integrated with the 4-bit matrix multiplication
  2. Currently, using bnb_4bit_compute_type='fp16' can lead to instabilities.
  3. Make sure that tokenizer.bos_token_id = 1 to avoid generation issues.

Acknowledgements

We also thank Meta for releasing the LLaMA models without which this work would not have been possible.

This repo builds on the Stanford Alpaca , QLORA, Chinese-Guanaco and LMSYS FastChat repos.

License and Intended Use

We release the resources associated with QLoRA finetuning in this repository under GLP3 license. In addition, we release the FIN-LLAMA model family for base LLaMA model sizes of 7B, 13B, 33B, and 65B. These models are intended for purposes in line with the LLaMA license and require access to the LLaMA models.

Prompts

Act as an Accountant

I want you to act as an accountant and come up with creative ways to manage finances. You'll need to consider budgeting, investment strategies and risk management when creating a financial plan for your client. In some cases, you may also need to provide advice on taxation laws and regulations in order to help them maximize their profits. My first suggestion request is “Create a financial plan for a small business that focuses on cost savings and long-term investments".

Paged Optimizer

You can access the paged optimizer with the argument --optim paged_adamw_32bit

Cite

@misc{Fin-LLAMA,
  author = {William Todt, Ramtin Babaei, Pedram Babaei},
  title = {Fin-LLAMA: Efficient Finetuning of Quantized LLMs for Finance},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/Bavest/fin-llama}},
}
Downloads last month
13
Safetensors
Model size
4.45B params
Tensor type
F32
·
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/fin-llama-33B-GPTQ

Quantized
(3)
this model

Dataset used to train TheBloke/fin-llama-33B-GPTQ