Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Fin Llama 33B - GGUF

Description

This repo contains GGUF format model files for Bavest's Fin Llama 33B.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
fin-llama-33b.Q2_K.gguf Q2_K 2 13.50 GB 16.00 GB smallest, significant quality loss - not recommended for most purposes
fin-llama-33b.Q3_K_S.gguf Q3_K_S 3 14.06 GB 16.56 GB very small, high quality loss
fin-llama-33b.Q3_K_M.gguf Q3_K_M 3 15.76 GB 18.26 GB very small, high quality loss
fin-llama-33b.Q3_K_L.gguf Q3_K_L 3 17.28 GB 19.78 GB small, substantial quality loss
fin-llama-33b.Q4_0.gguf Q4_0 4 18.36 GB 20.86 GB legacy; small, very high quality loss - prefer using Q3_K_M
fin-llama-33b.Q4_K_S.gguf Q4_K_S 4 18.44 GB 20.94 GB small, greater quality loss
fin-llama-33b.Q4_K_M.gguf Q4_K_M 4 19.62 GB 22.12 GB medium, balanced quality - recommended
fin-llama-33b.Q5_0.gguf Q5_0 5 22.40 GB 24.90 GB legacy; medium, balanced quality - prefer using Q4_K_M
fin-llama-33b.Q5_K_S.gguf Q5_K_S 5 22.40 GB 24.90 GB large, low quality loss - recommended
fin-llama-33b.Q5_K_M.gguf Q5_K_M 5 23.05 GB 25.55 GB large, very low quality loss - recommended
fin-llama-33b.Q6_K.gguf Q6_K 6 26.69 GB 29.19 GB very large, extremely low quality loss
fin-llama-33b.Q8_0.gguf Q8_0 8 34.57 GB 37.07 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/fin-llama-33B-GGUF and below it, a specific filename to download, such as: fin-llama-33b.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/fin-llama-33B-GGUF fin-llama-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/fin-llama-33B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/fin-llama-33B-GGUF fin-llama-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 32 -m fin-llama-33b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model in Python code, using ctransformers

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers

Simple ctransformers example code

from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/fin-llama-33B-GGUF", model_file="fin-llama-33b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Bavest's Fin Llama 33B

FIN-LLAMA

Efficient Finetuning of Quantized LLMs for Finance

Adapter Weights | Dataset

Installation

To load models in 4bits with transformers and bitsandbytes, you have to install accelerate and transformers from source and make sure you have the latest version of the bitsandbytes library (0.39.0).

pip3 install -r requirements.txt

Other dependencies

If you want to finetune the model on a new instance. You could run the setup.sh to install the python and cuda package.

bash scripts/setup.sh

Finetuning

bash script/finetune.sh

Usage

Quantization parameters are controlled from the BitsandbytesConfig

  • Loading in 4 bits is activated through load_in_4bit
  • The datatype used for the linear layer computations with bnb_4bit_compute_dtype
  • Nested quantization is activated through bnb_4bit_use_double_quant
  • The datatype used for qunatization is specified with bnb_4bit_quant_type. Note that there are two supported quantization datatypes fp4 (four bit float) and nf4 (normal four bit float). The latter is theoretically optimal for normally distributed weights and we recommend using nf4.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

pretrained_model_name_or_path = "bavest/fin-llama-33b-merge"
model = AutoModelForCausalLM.from_pretrained(
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    load_in_4bit=True,
    device_map='auto',
    torch_dtype=torch.bfloat16,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4'
    ),
)

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)

question = "What is the market cap of apple?"
input = "" # context if needed

prompt = f"""
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's question.
'### Instruction:\n{question}\n\n### Input:{input}\n""\n\n### Response:
"""

input_ids = tokenizer.encode(prompt, return_tensors="pt").to('cuda:0')

with torch.no_grad():
    generated_ids = model.generate(
        input_ids,
        do_sample=True,
        top_p=0.9,
        temperature=0.8,
        max_length=128
    )

generated_text = tokenizer.decode(
    [el.item() for el in generated_ids[0]], skip_special_tokens=True
)

Dataset for FIN-LLAMA

The dataset is released under bigscience-openrail-m. You can find the dataset used to train FIN-LLAMA models on HF at bavest/fin-llama-dataset.

Known Issues and Limitations

Here a list of known issues and bugs. If your issue is not reported here, please open a new issue and describe the problem. See QLORA for any other limitations.

  1. 4-bit inference is slow. Currently, our 4-bit inference implementation is not yet integrated with the 4-bit matrix multiplication
  2. Currently, using bnb_4bit_compute_type='fp16' can lead to instabilities.
  3. Make sure that tokenizer.bos_token_id = 1 to avoid generation issues.

Acknowledgements

We also thank Meta for releasing the LLaMA models without which this work would not have been possible.

This repo builds on the Stanford Alpaca , QLORA, Chinese-Guanaco and LMSYS FastChat repos.

License and Intended Use

We release the resources associated with QLoRA finetuning in this repository under GLP3 license. In addition, we release the FIN-LLAMA model family for base LLaMA model sizes of 7B, 13B, 33B, and 65B. These models are intended for purposes in line with the LLaMA license and require access to the LLaMA models.

Prompts

Act as an Accountant

I want you to act as an accountant and come up with creative ways to manage finances. You'll need to consider budgeting, investment strategies and risk management when creating a financial plan for your client. In some cases, you may also need to provide advice on taxation laws and regulations in order to help them maximize their profits. My first suggestion request is “Create a financial plan for a small business that focuses on cost savings and long-term investments".

Paged Optimizer

You can access the paged optimizer with the argument --optim paged_adamw_32bit

Cite

@misc{Fin-LLAMA,
  author = {William Todt, Ramtin Babaei, Pedram Babaei},
  title = {Fin-LLAMA: Efficient Finetuning of Quantized LLMs for Finance},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/Bavest/fin-llama}},
}
Downloads last month
191
GGUF
Model size
32.5B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/fin-llama-33B-GGUF

Quantized
(3)
this model

Dataset used to train TheBloke/fin-llama-33B-GGUF