TheBloke's picture
Update README.md
bb3282f
|
raw
history blame
4.2 kB
metadata
datasets:
  - gozfarb/ShareGPT_Vicuna_unfiltered
license: other
inference: false

VicUnlocked-30B-LoRA GGML

This is GGML format quantised 4-bit, 5-bit and 8-bit models of Neko Institute of Science's VicUnLocked 30B LoRA.

The files in this repo are the result of merging the above LoRA with the original LLaMA 30B, then converting to GGML for CPU (+ CUDA) inference using llama.cpp.

Repositories available

THESE FILES REQUIRE LATEST LLAMA.CPP (May 12th 2023 - commit b9fd7ee)!

llama.cpp recently made a breaking change to its quantisation methods.

I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit b9fd7ee or later) to use them.

Provided files

Name Quant method Bits Size RAM required Use case
VicUnlocked-30B-LoRA.ggml.q4_0.bin q4_0 4bit 20.3GB 23GB 4-bit.
VicUnlocked-30B-LoRA.ggml.q4_1.bin q4_1 5bit 24.4GB 27GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
VicUnlocked-30B-LoRA.ggml.q5_0.bin q5_0 5bit 22.4GB 25GB 5-bit. Higher accuracy, higher resource usage and slower inference.
VicUnlocked-30B-LoRA.ggml.q5_1.bin q5_1 5bit 24.4GB 27GB 5-bit. Even higher accuracy, and higher resource usage and slower inference.
VicUnlocked-30B-LoRA.ggml.q8_0.bin q8_0 8bit 36.6GB 39GB 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 8 -m VicUnlocked-30B-LoRA.ggml.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: write a story about llamas ### Response:"

Change -t 8 to the number of physical CPU cores you have.

How to run in text-generation-webui

GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Original model card

Convert tools

https://github.com/practicaldreamer/vicuna_to_alpaca

Training tool

https://github.com/oobabooga/text-generation-webui

ATM I'm using 2023.05.04v0 of the dataset and training full context.

Notes:

So I will only be training 1 epoch, as full context 30b takes so long to train. This 1 epoch will take me 8 days lol but luckily these LoRA feels fully functinal at epoch 1 as shown on my 13b one. Also I will be uploading checkpoints almost everyday. I could train another epoch if there's enough want for it.

Update: Since I will not be training over 1 epoch @Aeala is training for the full 3 https://huggingface.co/Aeala/VicUnlocked-alpaca-half-30b-LoRA but it's half ctx if you care about that. Also @Aeala's just about done.

Update: Training Finished at Epoch 1, These 8 days sure felt long. I only have one A6000 lads there's only so much I can do. Also RIP gozfarb IDK what happened to him.

How to test?

  1. Download LLaMA-30B-HF if you have not: https://huggingface.co/Neko-Institute-of-Science/LLaMA-30B-HF
  2. Make a folder called VicUnLocked-30b-LoRA in the loras folder.
  3. Download adapter_config.json and adapter_model.bin into VicUnLocked-30b-LoRA.
  4. Load ooba: python server.py --listen --model LLaMA-30B-HF --load-in-8bit --chat --lora VicUnLocked-30b-LoRA
  5. Select instruct and chose Vicuna-v1.1 template.

Training Log

https://wandb.ai/neko-science/VicUnLocked/runs/vx8yzwi7