resnet-fine_tuned / README.md
Thamer's picture
Update README.md
bff715a
metadata
license: apache-2.0
base_model: microsoft/resnet-34
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: resnet-fine_tuned
    results: []
datasets:
  - Falah/Alzheimer_MRI
library_name: transformers
pipeline_tag: image-classification

resnet-fine_tuned

This model is a fine-tuned version of microsoft/resnet-34 on the Falah/Alzheimer_MRI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1983
  • Accuracy: 0.9219

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9041 1.0 80 0.9659 0.5352
0.8743 2.0 160 0.9348 0.5797
0.7723 3.0 240 0.7793 0.6594
0.6864 4.0 320 0.6799 0.7031
0.5347 5.0 400 0.5596 0.7703
0.4282 6.0 480 0.5078 0.7766
0.4315 7.0 560 0.5455 0.7680
0.3747 8.0 640 0.4203 0.8266
0.2977 9.0 720 0.3926 0.8469
0.2252 10.0 800 0.3024 0.8742
0.2675 11.0 880 0.2731 0.8906
0.2136 12.0 960 0.3045 0.875
0.1998 13.0 1040 0.2370 0.9
0.2406 14.0 1120 0.2387 0.9086
0.1873 15.0 1200 0.1983 0.9219

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3