English
HYDiT-ControlNet / README.md
Zhiminli's picture
Upload folder using huggingface_hub
fb5c6d1 verified
|
raw
history blame
8.39 kB
## Using HunyuanDiT ControlNet
### Instructions
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1).
We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.
Download the model using the following commands:
```bash
cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet --local-dir ./ckpts/t2i/controlnet
# Quick start
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition_image_path controlnet/asset/input/canny.jpg --control_weight 1.0
```
Examples of condition input and ControlNet results are as follows:
<table>
<tr>
<td colspan="3" align="center">Condition Input</td>
</tr>
<tr>
<td align="center">Canny ControlNet </td>
<td align="center">Depth ControlNet </td>
<td align="center">Pose ControlNet </td>
</tr>
<tr>
<td align="center">在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围<br>(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.) </td>
<td align="center">在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足<br>(In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment.) </td>
<td align="center">一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格<br>(An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style) </td>
</tr>
<tr>
<td align="center"><img src="asset/input/canny.jpg" alt="Image 0" width="200"/></td>
<td align="center"><img src="asset/input/depth.jpg" alt="Image 1" width="200"/></td>
<td align="center"><img src="asset/input/pose.jpg" alt="Image 2" width="200"/></td>
</tr>
<tr>
<td colspan="3" align="center">ControlNet Output</td>
</tr>
<tr>
<td align="center"><img src="asset/output/canny.jpg" alt="Image 3" width="200"/></td>
<td align="center"><img src="asset/output/depth.jpg" alt="Image 4" width="200"/></td>
<td align="center"><img src="asset/output/pose.jpg" alt="Image 5" width="200"/></td>
</tr>
</table>
### Training
We utilize [**DWPose**](https://github.com/IDEA-Research/DWPose) for pose extraction. Please follow their guidelines to download the checkpoints and save them to `hydit/annotator/ckpts` directory. Additionally, ensure that you install the related dependencies.
```bash
pip install matplotlib
pip install onnxruntime_gpu
```
We provide three types of weights for ControlNet training, `ema`, `module` and `distill`, and you can choose according to the actual effects. By default, we use `distill` weights.
Here is an example, we load the `distill` weights into the main model and conduct ControlNet training.
If you want to load the `module` weights into the main model, just remove the `--ema-to-module` parameter.
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
```bash
task_flag="canny_controlnet" # task flag is used to identify folders.
control_type=canny
resume=./ckpts/t2i/model/ # checkpoint root for resume
index_file=path/to/your/index_file
results_dir=./log_EXP # save root for results
batch_size=1 # training batch size
image_size=1024 # training image resolution
grad_accu_steps=2 # gradient accumulation
warmup_num_steps=0 # warm-up steps
lr=0.0001 # learning rate
ckpt_every=10000 # create a ckpt every a few steps.
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps.
sh $(dirname "$0")/run_g_controlnet.sh \
--task-flag ${task_flag} \
--control_type ${control_type} \
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
--predict-type v_prediction \
--multireso \
--reso-step 64 \
--ema-to-module \
--uncond-p 0.44 \
--uncond-p-t5 0.44 \
--index-file ${index_file} \
--random-flip \
--lr ${lr} \
--batch-size ${batch_size} \
--image-size ${image_size} \
--global-seed 999 \
--grad-accu-steps ${grad_accu_steps} \
--warmup-num-steps ${warmup_num_steps} \
--use-flash-attn \
--use-fp16 \
--use-ema \
--ema-dtype fp32 \
--results-dir ${results_dir} \
--resume-split \
--resume ${resume} \
--ckpt-every ${ckpt_every} \
--ckpt-latest-every ${ckpt_latest_every} \
--log-every 10 \
--deepspeed \
--deepspeed-optimizer \
--use-zero-stage 2 \
"$@"
```
Recommended parameter settings
| Parameter | Description | Recommended Parameter Value | Note|
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
| `--batch_size` | Training batch size | 1 | Depends on GPU memory|
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
| `--lr` | Learning rate | 0.0001 | - |
| `--control_type` | ControlNet condition type, support 3 types now (canny, depth and pose) | / | - |
### Inference
You can use the following command line for inference.
a. Using canny ControlNet during inference
```bash
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition_image_path controlnet/asset/input/canny.jpg --control_weight 1.0
```
b. Using pose ControlNet during inference
```bash
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition_image_path controlnet/asset/input/depth.jpg --control_weight 1.0
```
c. Using depth ControlNet during inference
```bash
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition_image_path controlnet/asset/input/pose.jpg --control_weight 1.0
```