metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
tags:
- alignment_handbook-handbook
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback
model-index:
- name: Meta-Llama-3-8B-Base-5e-7
results: []
Meta-Llama-3-8B-Base-5e-7
This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set:
- Loss: 1.6913
- Rewards/chosen: -0.7344
- Rewards/rejected: -0.8094
- Rewards/accuracies: 0.5610
- Rewards/margins: 0.0751
- Logps/rejected: -0.8094
- Logps/chosen: -0.7344
- Logits/rejected: -0.5793
- Logits/chosen: -0.5922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
1.6906 | 0.8550 | 400 | 1.6913 | -0.7344 | -0.8094 | 0.5610 | 0.0751 | -0.8094 | -0.7344 | -0.5793 | -0.5922 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1