English
art
Stable Diffusion
yibolu commited on
Commit
3d9f170
1 Parent(s): 0bb50d9

update readme

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -81,7 +81,7 @@ from lyrasd_model import LyraSdTxt2ImgPipeline
81
  # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
82
  lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
83
  model_path = "./models/lyrasd_rev_animated"
84
- lora_path = "./models/lyrasd_xiaorenshu_lora"
85
 
86
  # 构建 Txt2Img 的 Pipeline
87
  model = LyraSdTxt2ImgPipeline(model_path, lib_path)
@@ -130,14 +130,14 @@ from lyrasd_model import LyraSdXLTxt2ImgPipeline
130
  # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
131
  lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
132
  model_path = "./models/lyrasd_helloworldSDXL20Fp16"
133
- lora_path = "./models/lyrasd_xiaorenshu_lora"
134
 
135
  # 构建 Txt2Img 的 Pipeline
136
  model = LyraSdXLTxt2ImgPipeline(model_path, lib_path)
137
 
138
  # load lora
139
  # lora model path, name,lora strength
140
- model.load_lora_v2(lora_path, "xiaorenshu", 0.4)
141
 
142
  # 准备应用的输入和超参数
143
  prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
@@ -165,7 +165,7 @@ for i, image in enumerate(images):
165
  image.save(f"outputs/res_txt2img_xl_lora_{i}.png")
166
 
167
  # unload lora,参数为 lora 的名字,是否清除 lora 缓存
168
- model.unload_lora_v2("xiaorenshu", True)
169
  ```
170
 
171
  ## Demo output
 
81
  # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
82
  lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
83
  model_path = "./models/lyrasd_rev_animated"
84
+ lora_path = "./models/xiaorenshu.safetensors"
85
 
86
  # 构建 Txt2Img 的 Pipeline
87
  model = LyraSdTxt2ImgPipeline(model_path, lib_path)
 
130
  # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
131
  lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
132
  model_path = "./models/lyrasd_helloworldSDXL20Fp16"
133
+ lora_path = "./models/dissolve_sdxl.safetensors"
134
 
135
  # 构建 Txt2Img 的 Pipeline
136
  model = LyraSdXLTxt2ImgPipeline(model_path, lib_path)
137
 
138
  # load lora
139
  # lora model path, name,lora strength
140
+ model.load_lora_v2(lora_path, "dissolve_sdxl", 0.4)
141
 
142
  # 准备应用的输入和超参数
143
  prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
 
165
  image.save(f"outputs/res_txt2img_xl_lora_{i}.png")
166
 
167
  # unload lora,参数为 lora 的名字,是否清除 lora 缓存
168
+ model.unload_lora_v2("dissolve_sdxl", True)
169
  ```
170
 
171
  ## Demo output