|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution |
|
import numpy as np |
|
|
|
from safetensors.torch import load_file |
|
|
|
import os |
|
|
|
class LyraSdVaeModel(): |
|
r""" |
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
force_upcast (`bool`, *optional*, default to `True`): |
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE |
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case |
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
dtype: str = "fp16", |
|
scaling_factor: float = 0.18215, |
|
scale_factor: int = 8, |
|
is_upcast: bool = False |
|
): |
|
super().__init__() |
|
self.is_upcast = is_upcast |
|
self.scaling_factor = scaling_factor |
|
self.scale_factor = scale_factor |
|
self.model = torch.classes.lyrasd.VaeModelOp( |
|
dtype, |
|
is_upcast |
|
) |
|
|
|
self.vae_cache = {} |
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
self.tile_latent_min_size = 512 |
|
self.tile_sample_min_size = 64 |
|
self.tile_overlap_factor = 0.25 |
|
|
|
def reload_vae_model(self, vae_path, vae_file_format='fp32'): |
|
if len(vae_path) > 0 and vae_path[-1] != "/": |
|
vae_path = vae_path + "/" |
|
return self.model.reload_vae_model(vae_path, vae_file_format) |
|
|
|
def reload_vae_model_v2(self, model_path): |
|
checkpoint_file = os.path.join(model_path, "vae/diffusion_pytorch_model.bin") |
|
if not os.path.exists(checkpoint_file): |
|
checkpoint_file = os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors") |
|
if checkpoint_file in self.vae_cache: |
|
state_dict = self.vae_cache[checkpoint_file] |
|
else: |
|
if "safetensors" in checkpoint_file: |
|
state_dict = load_file(checkpoint_file) |
|
else: |
|
state_dict = torch.load(checkpoint_file, map_location="cpu") |
|
|
|
|
|
for path in ["encoder.mid_block.attentions.0", "decoder.mid_block.attentions.0"]: |
|
|
|
|
|
|
|
if f"{path}.query.weight" in state_dict: |
|
state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight") |
|
if f"{path}.query.bias" in state_dict: |
|
state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias") |
|
|
|
|
|
if f"{path}.key.weight" in state_dict: |
|
state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight") |
|
if f"{path}.key.bias" in state_dict: |
|
state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias") |
|
|
|
|
|
if f"{path}.value.weight" in state_dict: |
|
state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight") |
|
if f"{path}.value.bias" in state_dict: |
|
state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias") |
|
|
|
|
|
if f"{path}.proj_attn.weight" in state_dict: |
|
state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight") |
|
if f"{path}.proj_attn.bias" in state_dict: |
|
state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias") |
|
|
|
for key in state_dict: |
|
|
|
if len(state_dict[key].shape) == 4: |
|
state_dict[key] = state_dict[key].permute(0,2,3,1).contiguous() |
|
else: |
|
state_dict[key] = state_dict[key] |
|
if self.is_upcast and (key.startswith("decoder.up_blocks.2") or key.startswith("decoder.up_blocks.3") or key.startswith("decoder.conv_norm_out")): |
|
|
|
state_dict[key] = state_dict[key].to(torch.float32) |
|
else: |
|
state_dict[key] = state_dict[key].to(torch.float16) |
|
|
|
self.vae_cache[checkpoint_file] = state_dict |
|
|
|
return self.model.reload_vae_model_from_cache(state_dict, "cpu") |
|
|
|
def enable_tiling(self, use_tiling: bool = True): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.use_tiling = use_tiling |
|
|
|
def disable_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.enable_tiling(False) |
|
|
|
def enable_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
def lyra_decode(self, x: torch.FloatTensor) -> torch.FloatTensor: |
|
x = x.permute(0, 2, 3, 1).contiguous() |
|
x = self.model.vae_decode(x) |
|
return x.permute(0, 3, 1, 2) |
|
|
|
def lyra_encode(self, x: torch.FloatTensor) -> torch.FloatTensor: |
|
x = x.permute(0, 2, 3, 1).contiguous() |
|
x = self.model.vae_encode(x) |
|
return x.permute(0, 3, 1, 2) |
|
|
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True |
|
) -> DiagonalGaussianDistribution: |
|
""" |
|
Encode a batch of images into latents. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): |
|
return self.tiled_encode(x, return_dict=return_dict) |
|
|
|
if self.use_slicing and x.shape[0] > 1: |
|
encoded_slices = [self.lyra_encode( |
|
x_slice) for x_slice in x.split(1)] |
|
h = torch.cat(encoded_slices) |
|
posterior = DiagonalGaussianDistribution(h) |
|
else: |
|
moments = self.lyra_encode(x) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
return posterior |
|
|
|
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> torch.FloatTensor: |
|
if self.use_tiling and (z.shape[2] > self.tile_latent_min_size or z.shape[3] > self.tile_latent_min_size): |
|
return self.tiled_decode(z, return_dict=return_dict) |
|
|
|
dec = self.lyra_decode(z) |
|
|
|
return dec |
|
|
|
def decode( |
|
self, z: torch.FloatTensor, return_dict: bool = True, generator=None |
|
) -> torch.FloatTensor: |
|
""" |
|
Decode a batch of images. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
|
|
""" |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode( |
|
z_slice) for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z) |
|
|
|
return decoded |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * \ |
|
(1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * \ |
|
(1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> DiagonalGaussianDistribution: |
|
r"""Encode a batch of images using a tiled encoder. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several |
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is |
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
output, but they should be much less noticeable. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain |
|
`tuple` is returned. |
|
""" |
|
overlap_size = int(self.tile_sample_min_size * |
|
(1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * |
|
self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[3], overlap_size): |
|
tile = x[:, :, i: i + self.tile_sample_min_size, |
|
j: j + self.tile_sample_min_size] |
|
tile = self.lyra_encode(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
moments = torch.cat(result_rows, dim=2) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
return posterior |
|
|
|
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> torch.FloatTensor: |
|
r""" |
|
Decode a batch of images using a tiled decoder. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
overlap_size = int(self.tile_latent_min_size * |
|
(1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_size * |
|
self.tile_overlap_factor) |
|
row_limit = self.tile_sample_min_size - blend_extent |
|
|
|
|
|
|
|
rows = [] |
|
for i in range(0, z.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, z.shape[3], overlap_size): |
|
tile = z[:, :, i: i + self.tile_latent_min_size, |
|
j: j + self.tile_latent_min_size] |
|
decoded = self.lyra_decode(tile) |
|
row.append(decoded) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
dec = torch.cat(result_rows, dim=2) |
|
if not return_dict: |
|
return (dec,) |
|
|
|
return dec |
|
|