File size: 2,251 Bytes
ae89015 9ced76e ae89015 ddb8777 9ced76e 5507be0 9ced76e 2dd77b1 b8227c1 76d6b62 ddb8777 9ced76e 3046469 ddb8777 3046469 ddb8777 9ced76e 76d6b62 25dabe4 0007b0f 9ced76e 25dabe4 0007b0f 76d6b62 0007b0f 65ea183 0007b0f 65ea183 0007b0f 65ea183 0007b0f 9ced76e b8227c1 394166f ce7511f 394166f b8efce6 394166f b8227c1 9ced76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: creativeml-openrail-m
language:
- zh
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- art
- tensorRT
---
## Model Card for lyraSD
lyraSD is currently the **fastest Stable Diffusion model** available, boasting an inference cost of only **0.36 seconds** for a 512x512 image, accelerating the process up to **10 times faster** than the original version.
Among its main features are:
- weights: original Stable Diffusion 1.5 weights
- input image: 512x512 (in img2img mode)
- output image: 512x512
- device requirements: Nvidia Ampere architecture (A100) or compatable
- super-resultion: 4x by default, optional.
## Speed
### test environment
- device: Nvidia A100 40G
- img size: 512x512
- percision:fp16
- steps: 30
- solver: LMSD
### text2img
|model|time cost(ms)|memory(MB)|
|:-:|:-:|:-:|
|Pytorch|~5000ms|~10240|
|LyraSD|~435ms|~4026|
### superResolution
|model|time cost(ms)|memory(MB)|
|:-:|:-:|:-:|
|Pytorch|720ms|~6650|
|LyraSD|~26ms|~1600|
## Model Sources [optional]
- **Repository:** [https://huggingface.co/runwayml/stable-diffusion-v1-5]
## Uses
```python
from lyraSD import LyraSD
t2imodel = LyraSD("text2img", "./sd1.5-engine")
t2imodel.inference(prompt="A fantasy landscape, trending on artstation", use_super=False)
from PIL import Image
i2imodel = LyraSD("img2img", "./sd1.5-engine")
demo_img = Image.open("output/text2img_demo.jpg")
i2imodel.inference(prompt="A fantasy landscape, trending on artstation", image=demo_img)
```
## Demo output
### text2img
![text2img_demo](./output/text2img_demo.jpg)
### img2img
![text2img_demo](./output/img2img_input.jpg)
![text2img_demo](./output/img2img_demo.jpg)
## environment
- hardware: Nvidia Ampere architecture (A100) or compatable
- docker image avaible: https://hub.docker.com/r/bigmoyan/lyra_aigc/tags
```
docker pull bigmoyan/lyra_aigc:v0.1
```
## citation
``` bibtex
@Misc{xFormers2022,
author = {Bin Wu, Kangjian Wu, Zhengtao Wang},
title = {LyraSD},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD}},
year = {2023}
}
```
## report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraSD/discussions
- report bug with a `[bug]` mark in the title.
|