English
art
Stable Diffusion
File size: 9,353 Bytes
6eca12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import inspect
import os
import time
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

import gc
import torch
import numpy as np
from glob import glob

from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.schedulers import (DPMSolverMultistepScheduler,
                                  EulerAncestralDiscreteScheduler,
                                  EulerDiscreteScheduler,
                                  KarrasDiffusionSchedulers)
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from .lyrasd_vae_model import LyraSdVaeModel
from .module.lyrasd_ip_adapter import LyraIPAdapter
from .lora_util import add_text_lora_layer, add_xltext_lora_layer, add_lora_to_opt_model, load_state_dict
from safetensors.torch import load_file


class LyraSDXLPipelineBase(TextualInversionLoaderMixin):
    def __init__(self, device=torch.device("cuda"), dtype=torch.float16, num_channels_unet=4, num_channels_latents=4, vae_scale_factor=8, vae_scaling_factor=0.18215) -> None:
        self.device = device
        self.dtype = dtype

        self.num_channels_unet = num_channels_unet
        self.num_channels_latents = num_channels_latents
        self.vae_scale_factor = vae_scale_factor
        self.vae_scaling_factor = vae_scaling_factor

        self.unet_cache = {}
        self.unet_in_channels = 4

        self.controlnet_cache = {}

        self.loaded_lora = {}
        self.loaded_lora_strength = {}

        self.scheduler = None

        self.init_pipe()

    def init_pipe(self):
        self.vae = LyraSdVaeModel(
            scale_factor=self.vae_scale_factor, scaling_factor=self.vae_scaling_factor)

        self.unet = torch.classes.lyrasd.Unet2dConditionalModelOp(
            3,
            "fp16",
            self.num_channels_unet,
            self.num_channels_latents
        )

        self.image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor)
        
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )

        self.feature_extractor = CLIPImageProcessor()

    def reload_pipe(self, model_path):
        self.tokenizer = CLIPTokenizer.from_pretrained(
            model_path, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(
            model_path, subfolder="text_encoder").to(self.dtype).to(self.device)
        
        self.reload_unet_model_v2(model_path)
        self.reload_vae_model_v2(model_path)

        if not self.scheduler:
            self.scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
                model_path, subfolder="scheduler")

    @property
    def _execution_device(self):
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def reload_unet_model(self, unet_path, unet_file_format='fp32'):
        if len(unet_path) > 0 and unet_path[-1] != "/":
            unet_path = unet_path + "/"
        self.unet.reload_unet_model(unet_path, unet_file_format)
        self.load_embedding_weight(
            self.add_embedding, f"{unet_path}add_embedding*", unet_file_format=unet_file_format)

    def reload_vae_model(self, vae_path, vae_file_format='fp32'):
        if len(vae_path) > 0 and vae_path[-1] != "/":
            vae_path = vae_path + "/"
        return self.vae.reload_vae_model(vae_path, vae_file_format)

    def load_lora(self, lora_model_path, lora_name, lora_strength, lora_file_format='fp32'):
        if len(lora_model_path) > 0 and lora_model_path[-1] != "/":
            lora_model_path = lora_model_path + "/"
        lora = add_xltext_lora_layer(
            self.text_encoder, self.text_encoder_2, lora_model_path, lora_strength, lora_file_format)

        self.loaded_lora[lora_name] = lora
        self.unet.load_lora(lora_model_path, lora_name,
                            lora_strength, lora_file_format)

    def unload_lora(self, lora_name, clean_cache=False):
        for layer_data in self.loaded_lora[lora_name]:
            layer = layer_data['layer']
            added_weight = layer_data['added_weight']
            layer.weight.data -= added_weight
        self.unet.unload_lora(lora_name, clean_cache)
        del self.loaded_lora[lora_name]
        gc.collect()
        torch.cuda.empty_cache()

    def load_lora_v2(self, lora_model_path, lora_name, lora_strength):
        if lora_name in self.loaded_lora:
            state_dict = self.loaded_lora[lora_name]
        else:
            state_dict = load_state_dict(lora_model_path)
            self.loaded_lora[lora_name] = state_dict
        self.loaded_lora_strength[lora_name] = lora_strength
        add_lora_to_opt_model(state_dict, self.unet, self.text_encoder,
                              None, lora_strength)

    def unload_lora_v2(self, lora_name, clean_cache=False):
        state_dict = self.loaded_lora[lora_name]
        lora_strength = self.loaded_lora_strength[lora_name]
        add_lora_to_opt_model(state_dict, self.unet, self.text_encoder,
                              None,  -1.0 * lora_strength)
        del self.loaded_lora_strength[lora_name]

        if clean_cache:
            del self.loaded_lora[lora_name]
            gc.collect()
            torch.cuda.empty_cache()

    def clean_lora_cache(self):
        self.unet.clean_lora_cache()

    def get_loaded_lora(self):
        return self.unet.get_loaded_lora()

    def load_ip_adapter(self, dir_ip_adapter, ip_plus, image_encoder_path, num_ip_tokens, ip_projection_dim,  dir_face_in=None, num_fp_tokens=1, fp_projection_dim=None, sdxl=True):
        self.ip_adapter_helper = LyraIPAdapter(self, sdxl, "cuda", dir_ip_adapter, ip_plus, image_encoder_path,
                                               num_ip_tokens, ip_projection_dim, dir_face_in, num_fp_tokens, fp_projection_dim)

    def reload_unet_model_v2(self, model_path):
        checkpoint_file = os.path.join(
            model_path, "unet/diffusion_pytorch_model.bin")
        if not os.path.exists(checkpoint_file):
            checkpoint_file = os.path.join(
                model_path, "unet/diffusion_pytorch_model.safetensors")
        if checkpoint_file in self.unet_cache:
            state_dict = self.unet_cache[checkpoint_file]
        else:
            if "safetensors" in checkpoint_file:
                state_dict = load_file(checkpoint_file)
            else:
                state_dict = torch.load(checkpoint_file, map_location="cpu")

            for key in state_dict:
                if len(state_dict[key].shape) == 4:
                    # converted_unet_checkpoint[key] = converted_unet_checkpoint[key].to(torch.float16).to("cuda").permute(0,2,3,1).contiguous().cpu()
                    state_dict[key] = state_dict[key].to(
                        torch.float16).permute(0, 2, 3, 1).contiguous()
                state_dict[key] = state_dict[key].to(torch.float16)
            self.unet_cache[checkpoint_file] = state_dict

        self.unet.reload_unet_model_from_cache(state_dict, "cpu")

    def reload_vae_model_v2(self, model_path):
        self.vae.reload_vae_model_v2(model_path)

    def load_controlnet_model(self, model_name, controlnet_path, model_dtype="fp32"):
        if len(controlnet_path) > 0 and controlnet_path[-1] != "/":
            controlnet_path = controlnet_path + "/"
        self.unet.load_controlnet_model(model_name, controlnet_path, model_dtype)

    def unload_controlnet_model(self, model_name):
        self.unet.unload_controlnet_model(model_name, True)

    def get_loaded_controlnet(self):
        return self.unet.get_loaded_controlnet()

    def load_controlnet_model_v2(self, model_name, controlnet_path):
        checkpoint_file = os.path.join(controlnet_path, "diffusion_pytorch_model.bin")
        if not os.path.exists(checkpoint_file):
            checkpoint_file = os.path.join(controlnet_path, "diffusion_pytorch_model.safetensors")
        if checkpoint_file in self.controlnet_cache:
            state_dict = self.controlnet_cache[checkpoint_file]
        else:
            if "safetensors" in checkpoint_file:
                state_dict = load_file(checkpoint_file)
            else:
                state_dict = torch.load(checkpoint_file, map_location="cpu")

            for key in state_dict:
                if len(state_dict[key].shape) == 4:
                    # converted_unet_checkpoint[key] = converted_unet_checkpoint[key].to(torch.float16).to("cuda").permute(0,2,3,1).contiguous().cpu()
                    state_dict[key] = state_dict[key].to(torch.float16).permute(0,2,3,1).contiguous()
                state_dict[key] = state_dict[key].to(torch.float16)
            self.controlnet_cache[checkpoint_file] = state_dict

        self.unet.load_controlnet_model_from_state_dict(model_name, state_dict, "cpu")