File size: 9,353 Bytes
6eca12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import inspect
import os
import time
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import gc
import torch
import numpy as np
from glob import glob
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.schedulers import (DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
KarrasDiffusionSchedulers)
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from .lyrasd_vae_model import LyraSdVaeModel
from .module.lyrasd_ip_adapter import LyraIPAdapter
from .lora_util import add_text_lora_layer, add_xltext_lora_layer, add_lora_to_opt_model, load_state_dict
from safetensors.torch import load_file
class LyraSDXLPipelineBase(TextualInversionLoaderMixin):
def __init__(self, device=torch.device("cuda"), dtype=torch.float16, num_channels_unet=4, num_channels_latents=4, vae_scale_factor=8, vae_scaling_factor=0.18215) -> None:
self.device = device
self.dtype = dtype
self.num_channels_unet = num_channels_unet
self.num_channels_latents = num_channels_latents
self.vae_scale_factor = vae_scale_factor
self.vae_scaling_factor = vae_scaling_factor
self.unet_cache = {}
self.unet_in_channels = 4
self.controlnet_cache = {}
self.loaded_lora = {}
self.loaded_lora_strength = {}
self.scheduler = None
self.init_pipe()
def init_pipe(self):
self.vae = LyraSdVaeModel(
scale_factor=self.vae_scale_factor, scaling_factor=self.vae_scaling_factor)
self.unet = torch.classes.lyrasd.Unet2dConditionalModelOp(
3,
"fp16",
self.num_channels_unet,
self.num_channels_latents
)
self.image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.feature_extractor = CLIPImageProcessor()
def reload_pipe(self, model_path):
self.tokenizer = CLIPTokenizer.from_pretrained(
model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(
model_path, subfolder="text_encoder").to(self.dtype).to(self.device)
self.reload_unet_model_v2(model_path)
self.reload_vae_model_v2(model_path)
if not self.scheduler:
self.scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
model_path, subfolder="scheduler")
@property
def _execution_device(self):
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def reload_unet_model(self, unet_path, unet_file_format='fp32'):
if len(unet_path) > 0 and unet_path[-1] != "/":
unet_path = unet_path + "/"
self.unet.reload_unet_model(unet_path, unet_file_format)
self.load_embedding_weight(
self.add_embedding, f"{unet_path}add_embedding*", unet_file_format=unet_file_format)
def reload_vae_model(self, vae_path, vae_file_format='fp32'):
if len(vae_path) > 0 and vae_path[-1] != "/":
vae_path = vae_path + "/"
return self.vae.reload_vae_model(vae_path, vae_file_format)
def load_lora(self, lora_model_path, lora_name, lora_strength, lora_file_format='fp32'):
if len(lora_model_path) > 0 and lora_model_path[-1] != "/":
lora_model_path = lora_model_path + "/"
lora = add_xltext_lora_layer(
self.text_encoder, self.text_encoder_2, lora_model_path, lora_strength, lora_file_format)
self.loaded_lora[lora_name] = lora
self.unet.load_lora(lora_model_path, lora_name,
lora_strength, lora_file_format)
def unload_lora(self, lora_name, clean_cache=False):
for layer_data in self.loaded_lora[lora_name]:
layer = layer_data['layer']
added_weight = layer_data['added_weight']
layer.weight.data -= added_weight
self.unet.unload_lora(lora_name, clean_cache)
del self.loaded_lora[lora_name]
gc.collect()
torch.cuda.empty_cache()
def load_lora_v2(self, lora_model_path, lora_name, lora_strength):
if lora_name in self.loaded_lora:
state_dict = self.loaded_lora[lora_name]
else:
state_dict = load_state_dict(lora_model_path)
self.loaded_lora[lora_name] = state_dict
self.loaded_lora_strength[lora_name] = lora_strength
add_lora_to_opt_model(state_dict, self.unet, self.text_encoder,
None, lora_strength)
def unload_lora_v2(self, lora_name, clean_cache=False):
state_dict = self.loaded_lora[lora_name]
lora_strength = self.loaded_lora_strength[lora_name]
add_lora_to_opt_model(state_dict, self.unet, self.text_encoder,
None, -1.0 * lora_strength)
del self.loaded_lora_strength[lora_name]
if clean_cache:
del self.loaded_lora[lora_name]
gc.collect()
torch.cuda.empty_cache()
def clean_lora_cache(self):
self.unet.clean_lora_cache()
def get_loaded_lora(self):
return self.unet.get_loaded_lora()
def load_ip_adapter(self, dir_ip_adapter, ip_plus, image_encoder_path, num_ip_tokens, ip_projection_dim, dir_face_in=None, num_fp_tokens=1, fp_projection_dim=None, sdxl=True):
self.ip_adapter_helper = LyraIPAdapter(self, sdxl, "cuda", dir_ip_adapter, ip_plus, image_encoder_path,
num_ip_tokens, ip_projection_dim, dir_face_in, num_fp_tokens, fp_projection_dim)
def reload_unet_model_v2(self, model_path):
checkpoint_file = os.path.join(
model_path, "unet/diffusion_pytorch_model.bin")
if not os.path.exists(checkpoint_file):
checkpoint_file = os.path.join(
model_path, "unet/diffusion_pytorch_model.safetensors")
if checkpoint_file in self.unet_cache:
state_dict = self.unet_cache[checkpoint_file]
else:
if "safetensors" in checkpoint_file:
state_dict = load_file(checkpoint_file)
else:
state_dict = torch.load(checkpoint_file, map_location="cpu")
for key in state_dict:
if len(state_dict[key].shape) == 4:
# converted_unet_checkpoint[key] = converted_unet_checkpoint[key].to(torch.float16).to("cuda").permute(0,2,3,1).contiguous().cpu()
state_dict[key] = state_dict[key].to(
torch.float16).permute(0, 2, 3, 1).contiguous()
state_dict[key] = state_dict[key].to(torch.float16)
self.unet_cache[checkpoint_file] = state_dict
self.unet.reload_unet_model_from_cache(state_dict, "cpu")
def reload_vae_model_v2(self, model_path):
self.vae.reload_vae_model_v2(model_path)
def load_controlnet_model(self, model_name, controlnet_path, model_dtype="fp32"):
if len(controlnet_path) > 0 and controlnet_path[-1] != "/":
controlnet_path = controlnet_path + "/"
self.unet.load_controlnet_model(model_name, controlnet_path, model_dtype)
def unload_controlnet_model(self, model_name):
self.unet.unload_controlnet_model(model_name, True)
def get_loaded_controlnet(self):
return self.unet.get_loaded_controlnet()
def load_controlnet_model_v2(self, model_name, controlnet_path):
checkpoint_file = os.path.join(controlnet_path, "diffusion_pytorch_model.bin")
if not os.path.exists(checkpoint_file):
checkpoint_file = os.path.join(controlnet_path, "diffusion_pytorch_model.safetensors")
if checkpoint_file in self.controlnet_cache:
state_dict = self.controlnet_cache[checkpoint_file]
else:
if "safetensors" in checkpoint_file:
state_dict = load_file(checkpoint_file)
else:
state_dict = torch.load(checkpoint_file, map_location="cpu")
for key in state_dict:
if len(state_dict[key].shape) == 4:
# converted_unet_checkpoint[key] = converted_unet_checkpoint[key].to(torch.float16).to("cuda").permute(0,2,3,1).contiguous().cpu()
state_dict[key] = state_dict[key].to(torch.float16).permute(0,2,3,1).contiguous()
state_dict[key] = state_dict[key].to(torch.float16)
self.controlnet_cache[checkpoint_file] = state_dict
self.unet.load_controlnet_model_from_state_dict(model_name, state_dict, "cpu")
|