File size: 2,617 Bytes
6eca12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import torch
import time
from PIL import Image
import numpy as np
from lyrasd_model import LyraSdXLControlnetTxt2ImgPipeline
import GPUtil
# 存放模型文件的路径,应该包含一下结构:
# 1. clip 模型
# 2. 转换好的优化后的 unet 模型
# 3. 转换好的优化后的 controlnet 模型
# 4. vae 模型
# 5. scheduler 配置
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so"
model_path = "./models/helloworldSDXL20Fp16"
torch.classes.load_library(lib_path)
# 构建 Txt2Img 的 Pipeline
pipe = LyraSdXLControlnetTxt2ImgPipeline()
start = time.perf_counter()
pipe.reload_pipe(model_path)
print(f"pipeline load cost: {time.perf_counter() - start}")
# load Controlnet 模型,最多load 3个
start = time.perf_counter()
pipe.load_controlnet_model_v2("canny", "./models/controlnet-canny-sdxl-1.0")
print(f"controlnet load cost: {time.perf_counter() - start}")
# 可以通过 get_loaded_controlnet 方法获取目前已经load 好的Controlnet list
print(pipe.get_loaded_controlnet())
# 可以通过unload_controlnet_model 方法unload Controlnet
# pipe.unload_controlnet_model("canny")
control_img = Image.open("control_bird_canny.png")
# 准备应用的输入和超参数
prompt = "a bird"
negative_prompt = ""
height, width = 1024, 1024
steps = 20
guidance_scale = 7.5
generator = torch.Generator().manual_seed(123)
num_images = 1
guess_mode = False
# 可以一次性load 3 个 Controlnets,达到multi Controlnet的效果,这里的参数的长度需要对其
# Controlnet 所输入的img list 长度应该和 controlnet scale 与 Controlnet name 一致,而内部的list长度需要和batch size一致
# 对应的index 可以对其
controlnet_images = [[control_img]]
controlnet_scale = [0.5]
controlnet_names = ['canny']
# 推理生成,返回结果都是生成好的 PIL.Image
for batch in [1]:
print(f"cur batch: {batch}")
for _ in range(3):
start = time.perf_counter()
images = pipe(prompt=prompt, height=height, width=width, num_inference_steps=steps,
guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=batch,
generator=generator, controlnet_images=controlnet_images,
controlnet_scale=controlnet_scale, controlnet_names=controlnet_names,
guess_mode=guess_mode
)
print("cur cost: ", time.perf_counter() - start)
GPUtil.showUtilization(all=True)
# 存储生成的图片
for i, image in enumerate(images):
image.save(f"./outputs/res_controlnet_sdxl_txt2img_{i}.png")
|