English
art
Stable Diffusion
File size: 2,338 Bytes
8881820
 
 
 
 
 
 
 
 
 
 
 
 
 
6eca12e
 
 
 
 
 
8881820
6eca12e
 
 
8881820
 
 
6eca12e
8881820
6eca12e
8881820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import time
from PIL import Image

from lyrasd_model import LyraSdControlnetTxt2ImgPipeline

# 存放模型文件的路径,应该包含一下结构:
#   1. clip 模型
#   2. 转换好的优化后的 unet 模型
#   3. 转换好的优化后的 controlnet 模型
#   4. vae 模型
#   5. scheduler 配置

# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so"
model_path = "./models/rev-animated"
canny_controlnet_path = "./models/canny"

torch.classes.load_library(lib_path)

# 构建 Txt2Img 的 Pipeline
pipe = LyraSdControlnetTxt2ImgPipeline()

pipe.reload_pipe(model_path)

# load Controlnet 模型,最多load 3个
start = time.perf_counter()
pipe.load_controlnet_model_v2("canny", canny_controlnet_path)
print(f"controlnet load cost: {time.perf_counter() - start}")

# 可以通过 get_loaded_controlnet 方法获取目前已经load 好的Controlnet list
print(pipe.get_loaded_controlnet())

# 可以通过unload_controlnet_model 方法unload Controlnet
# pipe.unload_controlnet_model("canny")

control_img = Image.open("control_bird_canny.png")

# 准备应用的输入和超参数
prompt = "a blue bird"
negative_prompt = "NSFW"
height, width = 512, 512
steps = 20
guidance_scale = 7.5
generator = torch.Generator().manual_seed(123)
num_images = 1
guess_mode = False

# 可以一次性load 3 个 Controlnets,达到multi Controlnet的效果,这里的参数的长度需要对其
# Controlnet 所输入的img list 长度应该和 controlnet scale 与 Controlnet name 一致,而内部的list长度需要和batch size一致
# 对应的index 可以对其
controlnet_images = [[control_img]]
controlnet_scale = [0.5]
controlnet_names = ['canny']

# 推理生成,返回结果都是生成好的 PIL.Image

start = time.perf_counter()
images = pipe(prompt, height, width, steps,
                guidance_scale, negative_prompt, num_images,
                generator=generator, controlnet_images=controlnet_images,
                controlnet_scale=controlnet_scale, controlnet_names=controlnet_names,
                guess_mode=guess_mode
                )
print("cur cost: ",time.perf_counter() - start)

# 存储生成的图片
for i, image in enumerate(images):
    image.save(f"./outputs/res_controlnet_txt2img_{i}.png")