File size: 5,347 Bytes
7a036b4 78771d4 38b90d8 78771d4 38b90d8 78771d4 38b90d8 78771d4 13ed52a 78771d4 13ed52a 78771d4 7a036b4 38b90d8 13ed52a 38b90d8 13ed52a 38b90d8 13ed52a 38b90d8 13ed52a 38b90d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
language:
- ja
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
model-index:
- name: uniTKU-hubert-japanese-asr
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: common_voice_11_0
type: common_voice
args: ja
metrics:
- type: wer
value: 27.511982
name: Test WER
- type: cer
value: 11.563649
name: Test CER
---
# uniTKU-hubert-japanese-asr
This model was fine-tuned on a dataset provided by uniTKU, and it has maintained the original performance metrics on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja).
This model can only predict Hiragana.
## Training Procedure
Fine-tuning on the uniTKU dataset led to the following results:
| Step | Training Loss | Validation Loss | WER |
|-------|---------------|-----------------|--------|
| 100 | 1.127100 | 1.089644 | 0.668508|
| 200 | 0.873500 | 0.682353 | 0.508287|
| 300 | 0.786200 | 0.482965 | 0.397790|
| 400 | 0.670400 | 0.345377 | 0.381215|
| 500 | 0.719500 | 0.387554 | 0.337017|
| 600 | 0.707700 | 0.371083 | 0.292818|
| 700 | 0.658300 | 0.236447 | 0.243094|
| 800 | 0.611100 | 0.207679 | 0.193370|
### Training hyperparameters
The training hyperparameters remained consistent throughout the fine-tuning process:
- learning_rate: 1e-4
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 2
- max_steps: 800
- lr_scheduler_type: linear
### How to evaluate the model
```python
from transformers import HubertForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load
model = HubertForCTC.from_pretrained('TKU410410103/uniTKU-hubert-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/uniTKU-hubert-japanese-asr")
# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)
# resample
def process_waveforms(batch):
speech_arrays = []
sampling_rates = []
for audio_path in batch['audio']:
speech_array, _ = torchaudio.load(audio_path['path'])
speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
speech_arrays.append(speech_array_resampled)
sampling_rates.append(16000)
batch["array"] = speech_arrays
batch["sampling_rate"] = sampling_rates
return batch
# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
def prepare_char(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
return batch
resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)
# begin the evaluation process
wer = load("wer")
cer = load("cer")
def evaluate(batch):
inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)
wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])
print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```
### Test results
The final model was evaluated as follows:
On uniTKU Dataset:
- WER: 19.003370%
- CER: 11.027523%
On common_voice_11_0:
- WER: 27.511982%
- CER: 11.563649%
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1 |