File size: 7,602 Bytes
38da6d6 d857619 5aabcd5 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 7cb282c 38da6d6 c8bb413 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 38da6d6 d857619 ec133d6 d857619 38da6d6 439ddda 7cb282c df342be 7cb282c 439ddda d857619 38da6d6 d857619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: hubert-large-japanese-asr
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Reazonspeech
type: custom
args: ja
metrics:
- name: Test WER
type: wer
value: 40.5197
- name: Test CER
type: cer
value: 23.220979
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice
args: ja
metrics:
- name: Test WER
type: wer
value: 22.705487
- name: Test CER
type: cer
value: 9.39939
datasets:
- reazon-research/reazonspeech
- mozilla-foundation/common_voice_11_0
language:
- ja
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-large-asr
This model is a fine-tuned version of [rinna/japanese-hubert-large](https://huggingface.co/rinna/japanese-hubert-large) ASR. Initially fine-tuned on the [reazonspeech(small) dataset](https://huggingface.co/datasets/reazon-research/reazonspeech), it was subsequently further fine-tuned on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks.
This model can only predict Hiragana.
## Acknowledgments
This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).
## Training procedure
The model was fine-tuned in two main stages, first on the Reazonspeech dataset, followed by the common_voice_11_0 dataset. Details of the training steps and results are as follows:
### Training on Reazonspeech
The initial fine-tuning on the Reazonspeech(small) dataset was carried out with the following performance metrics:
| Step | Training Loss | Validation Loss | WER |
|-------|---------------|-----------------|--------|
| 1000 | 12.29880 | 3.610288 | 1.00000|
| 2000 | 3.601800 | 3.505306 | 1.00000|
| 3000 | 2.80300 | 1.948012 | 0.722361|
| 4000 | 1.961500 | 1.545842 | 0.558738|
| 5000 | 1.712000 | 1.420027 | 0.509049|
| 6000 | 1.565500 | 1.235171 | 0.466279|
| 7000 | 1.504900 | 1.160565 | 0.461829|
| 8000 | 1.409800 | 1.088012 | 0.427435|
| 9000 | 1.358800 | 1.097211 | 0.409861|
| 10000 | 1.318600 | 1.062294 | 0.403694|
| 11000 | 1.258500 | 1.026783 | 0.385464|
| 12000 | 1.245100 | 1.024860 | 0.379845|
| 13000 | 1.217700 | 0.985201 | 0.375634|
| 14000 | 1.187900 | 0.977686 | 0.367163|
| 15000 | 1.168100 | 0.978529 | 0.363656|
| 16000 | 1.135800 | 0.965668 | 0.363942|
| 17000 | 1.140600 | 0.953237 | 0.360912|
### Training on common_voice_11_0
After fine-tuning on Reazonspeech, further fine-tuning was performed on the common_voice_11_0 dataset, leading to the following results:
| Step | Training Loss | Validation Loss | WER |
|------|---------------|-----------------|--------|
| 1000 | 1.08950 | 0.49275 | 0.302035|
| 2000 | 0.86100 | 0.45113 | 0.266950|
| 3000 | 0.76240 | 0.442281 | 0.244981|
| 4000 | 0.70170 | 0.411666 | 0.234287|
| 5000 | 0.66400 | 0.411769 | 0.227942|
| 6000 | 0.63810 | 0.413067 | 0.225690|
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-4
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 10
- lr_scheduler_type: linear
### How to evaluate the model
```python
from transformers import HubertForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load
model = HubertForCTC.from_pretrained('TKU410410103/hubert-large-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/hubert-large-japanese-asr")
# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)
# resample
def process_waveforms(batch):
speech_arrays = []
sampling_rates = []
for audio_path in batch['audio']:
speech_array, _ = torchaudio.load(audio_path['path'])
speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
speech_arrays.append(speech_array_resampled)
sampling_rates.append(16000)
batch["array"] = speech_arrays
batch["sampling_rate"] = sampling_rates
return batch
# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
def prepare_char(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
return batch
resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)
# begin the evaluation process
wer = load("wer")
cer = load("cer")
def evaluate(batch):
inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)
wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])
print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```
### Test results
The final model was evaluated as follows:
On reazonspeech(tiny):
- WER: 40.519700%
- CER: 23.220979%
On common_voice_11_0:
- WER: 22.705487%
- CER: 9.399390%
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1 |