File size: 7,602 Bytes
38da6d6
d857619
 
 
 
 
 
 
5aabcd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d857619
 
 
 
 
38da6d6
 
 
d857619
 
38da6d6
d857619
38da6d6
7cb282c
38da6d6
c8bb413
 
d857619
38da6d6
d857619
38da6d6
 
d857619
38da6d6
d857619
38da6d6
d857619
 
38da6d6
d857619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38da6d6
 
d857619
 
38da6d6
d857619
 
 
 
 
 
 
 
38da6d6
d857619
38da6d6
d857619
 
 
 
 
 
ec133d6
d857619
38da6d6
439ddda
7cb282c
 
 
 
df342be
7cb282c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439ddda
 
 
 
 
 
 
 
 
 
 
 
d857619
38da6d6
d857619
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: hubert-large-japanese-asr
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Reazonspeech
      type: custom
      args: ja
    metrics:
    - name: Test WER
      type: wer
      value: 40.5197
    - name: Test CER
      type: cer
      value: 23.220979
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_11_0
      type: common_voice
      args: ja
    metrics:
    - name: Test WER
      type: wer
      value: 22.705487
    - name: Test CER
      type: cer
      value: 9.39939
datasets:
- reazon-research/reazonspeech
- mozilla-foundation/common_voice_11_0
language:
- ja
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-large-asr

This model is a fine-tuned version of [rinna/japanese-hubert-large](https://huggingface.co/rinna/japanese-hubert-large) ASR. Initially fine-tuned on the [reazonspeech(small) dataset](https://huggingface.co/datasets/reazon-research/reazonspeech), it was subsequently further fine-tuned on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks.

This model can only predict Hiragana.

## Acknowledgments

This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).


## Training procedure

The model was fine-tuned in two main stages, first on the Reazonspeech dataset, followed by the common_voice_11_0 dataset. Details of the training steps and results are as follows:

### Training on Reazonspeech
The initial fine-tuning on the Reazonspeech(small) dataset was carried out with the following performance metrics:

| Step  | Training Loss | Validation Loss | WER    |
|-------|---------------|-----------------|--------|
| 1000  | 12.29880      | 3.610288        | 1.00000|
| 2000  | 3.601800      | 3.505306        | 1.00000|
| 3000  | 2.80300       | 1.948012        | 0.722361|
| 4000  | 1.961500      | 1.545842        | 0.558738|
| 5000  | 1.712000      | 1.420027        | 0.509049|
| 6000  | 1.565500      | 1.235171        | 0.466279|
| 7000  | 1.504900      | 1.160565        | 0.461829|
| 8000  | 1.409800      | 1.088012        | 0.427435|
| 9000  | 1.358800      | 1.097211        | 0.409861|
| 10000 | 1.318600      | 1.062294        | 0.403694|
| 11000 | 1.258500      | 1.026783        | 0.385464|
| 12000 | 1.245100      | 1.024860        | 0.379845|
| 13000 | 1.217700      | 0.985201        | 0.375634|
| 14000 | 1.187900      | 0.977686        | 0.367163|
| 15000 | 1.168100      | 0.978529        | 0.363656|
| 16000 | 1.135800      | 0.965668        | 0.363942|
| 17000 | 1.140600      | 0.953237        | 0.360912|


### Training on common_voice_11_0
After fine-tuning on Reazonspeech, further fine-tuning was performed on the common_voice_11_0 dataset, leading to the following results:

| Step | Training Loss | Validation Loss | WER    |
|------|---------------|-----------------|--------|
| 1000 | 1.08950       | 0.49275         | 0.302035|
| 2000 | 0.86100       | 0.45113         | 0.266950|
| 3000 | 0.76240       | 0.442281        | 0.244981|
| 4000 | 0.70170       | 0.411666        | 0.234287|
| 5000 | 0.66400       | 0.411769        | 0.227942|
| 6000 | 0.63810       | 0.413067        | 0.225690|

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-4
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 10
- lr_scheduler_type: linear

### How to evaluate the model

```python
from transformers import HubertForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load

model = HubertForCTC.from_pretrained('TKU410410103/hubert-large-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/hubert-large-japanese-asr")

# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)

# resample
def process_waveforms(batch):
    speech_arrays = []
    sampling_rates = []

    for audio_path in batch['audio']:
        speech_array, _ = torchaudio.load(audio_path['path'])
        speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
        speech_arrays.append(speech_array_resampled)
        sampling_rates.append(16000)

    batch["array"] = speech_arrays
    batch["sampling_rate"] = sampling_rates

    return batch

# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
          "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
          "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
          "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
          "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()

def prepare_char(batch):
    batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
    batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
    return batch


resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)

# begin the evaluation process
wer = load("wer")
cer = load("cer")

def evaluate(batch):
    inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)

wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])

print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```

### Test results
The final model was evaluated as follows:

On reazonspeech(tiny):
- WER: 40.519700%
- CER: 23.220979%

On common_voice_11_0:
- WER: 22.705487%
- CER: 9.399390%

### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1