TKU410410103 commited on
Commit
d857619
1 Parent(s): 8f8d791

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -174
README.md CHANGED
@@ -1,201 +1,103 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - wer
8
+ - cer
9
+ model-index:
10
+ - name: hubert-base-ser
11
+ results: []
12
+ datasets:
13
+ - reazon-research/reazonspeech
14
+ - mozilla-foundation/common_voice_11_0
15
+ language:
16
+ - ja
17
  ---
18
 
 
19
 
20
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
21
+ should probably proofread and complete it, then remove this comment. -->
22
 
23
+ # hubert-large-asr
24
 
25
+ This model is a fine-tuned version of [rinna/japanese-hubert-large](https://huggingface.co/rinna/japanese-hubert-large) ASR. Initially fine-tuned on the Reazonspeech(small) dataset, it was subsequently further fine-tuned on the common_voice_11_0 dataset for ASR tasks.
26
 
27
+ ## Acknowledgments
28
 
29
+ This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).
30
 
31
+ ## Model description
32
 
33
+ More information needed
34
 
35
+ ## Intended uses & limitations
 
 
 
 
 
 
36
 
37
+ More information needed
38
 
39
+ ## Training and evaluation data
40
 
41
+ More information needed
 
 
42
 
43
+ ## Training procedure
44
 
45
+ The model was fine-tuned in two main stages, first on the Reazonspeech dataset, followed by the common_voice_11_0 dataset. Details of the training steps and results are as follows:
46
 
47
+ ### Training on Reazonspeech
48
+ The initial fine-tuning on the Reazonspeech(small) dataset was carried out with the following performance metrics:
49
 
50
+ | Step | Training Loss | Validation Loss | WER |
51
+ |-------|---------------|-----------------|--------|
52
+ | 1000 | 12.29880 | 3.610288 | 1.00000|
53
+ | 2000 | 3.601800 | 3.505306 | 1.00000|
54
+ | 3000 | 2.80300 | 1.948012 | 0.722361|
55
+ | 4000 | 1.961500 | 1.545842 | 0.558738|
56
+ | 5000 | 1.712000 | 1.420027 | 0.509049|
57
+ | 6000 | 1.565500 | 1.235171 | 0.466279|
58
+ | 7000 | 1.504900 | 1.160565 | 0.461829|
59
+ | 8000 | 1.409800 | 1.088012 | 0.427435|
60
+ | 9000 | 1.358800 | 1.097211 | 0.409861|
61
+ | 10000 | 1.318600 | 1.062294 | 0.403694|
62
+ | 11000 | 1.258500 | 1.026783 | 0.385464|
63
+ | 12000 | 1.245100 | 1.024860 | 0.379845|
64
+ | 13000 | 1.217700 | 0.985201 | 0.375634|
65
+ | 14000 | 1.187900 | 0.977686 | 0.367163|
66
+ | 15000 | 1.168100 | 0.978529 | 0.363656|
67
+ | 16000 | 1.135800 | 0.965668 | 0.363942|
68
+ | 17000 | 1.140600 | 0.953237 | 0.360912|
69
 
 
70
 
71
+ ### Training on common_voice_11_0
72
+ After fine-tuning on Reazonspeech, further fine-tuning was performed on the common_voice_11_0 dataset, leading to the following results:
73
 
74
+ | Step | Training Loss | Validation Loss | WER |
75
+ |------|---------------|-----------------|--------|
76
+ | 1000 | 1.08950 | 0.49275 | 0.302035|
77
+ | 2000 | 0.86100 | 0.45113 | 0.266950|
78
+ | 3000 | 0.76240 | 0.442281 | 0.244981|
79
+ | 4000 | 0.70170 | 0.411666 | 0.234287|
80
+ | 5000 | 0.66400 | 0.411769 | 0.227942|
81
+ | 6000 | 0.63810 | 0.413067 | 0.225690|
82
 
83
+ ### Training hyperparameters
84
 
85
+ The following hyperparameters were used during training:
86
+ - learning_rate: 1e-4
87
+ - train_batch_size: 8
88
+ - eval_batch_size: 8
89
+ - seed: 42
90
+ - gradient_accumulation_steps: 2
91
+ - total_train_batch_size: 10
92
+ - lr_scheduler_type: linear
93
 
94
+ ### Test results
95
 
96
+ WER: 22.705487%
97
+ CER: 9.399390%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ ### Framework versions
100
 
101
+ - Transformers 4.39.1
102
+ - Pytorch 2.2.1+cu118
103
+ - Datasets 2.17.1