|
--- |
|
license: apache-2.0 |
|
--- |
|
Have to use with basemodel "princeton-nlp/Llama-3-Instruct-8B-SimPO". |
|
Here's a example Demo code with Gradio: |
|
``` |
|
import gradio as gr |
|
from llamafactory.chat import ChatModel |
|
from llamafactory.extras.misc import torch_gc |
|
import re |
|
|
|
def split_into_sentences(text): |
|
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s') |
|
sentences = sentence_endings.split(text) |
|
return [sentence.strip() for sentence in sentences if sentence] |
|
|
|
def process_paragraph(paragraph, progress=gr.Progress()): |
|
sentences = split_into_sentences(paragraph) |
|
results = [] |
|
total_sentences = len(sentences) |
|
for i, sentence in enumerate(sentences): |
|
progress((i + 1) / total_sentences) |
|
messages.append({"role": "user", "content": sentence}) |
|
sentence_response = "" |
|
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300): |
|
sentence_response += new_text.strip() |
|
category = sentence_response.strip().lower().replace(' ', '_') |
|
if category != "fair": |
|
results.append((sentence, category)) |
|
else: |
|
results.append((sentence, "fair")) |
|
messages.append({"role": "assistant", "content": sentence_response}) |
|
torch_gc() |
|
return results |
|
|
|
|
|
args = dict( |
|
model_name_or_path="princeton-nlp/Llama-3-Instruct-8B-SimPO", # 使用量化的 Llama-3-8B-Instruct 模型 |
|
adapter_name_or_path="StevenChen16/llama3-8b-compliance-review-adapter", # 加载保存的 LoRA 适配器 |
|
template="llama3", # 与训练时使用的模板相同 |
|
finetuning_type="lora", # 与训练时使用的微调类型相同 |
|
quantization_bit=8, # 加载 4-bit 量化模型 |
|
use_unsloth=True, # 使用 UnslothAI 的 LoRA 优化以加速生成 |
|
) |
|
chat_model = ChatModel(args) |
|
messages = [] |
|
|
|
# 定义类型到颜色的映射 |
|
label_to_color = { |
|
"fair": "green", |
|
"limitation_of_liability": "red", |
|
"unilateral_termination": "orange", |
|
"unilateral_change": "yellow", |
|
"content_removal": "purple", |
|
"contract_by_using": "blue", |
|
"choice_of_law": "cyan", |
|
"jurisdiction": "magenta", |
|
"arbitration": "brown", |
|
} |
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(): |
|
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...") |
|
btn = gr.Button("Process") |
|
with gr.Column(): |
|
output = gr.HighlightedText(label="Processed Paragraph", color_map=label_to_color) |
|
progress = gr.Progress() |
|
|
|
def on_click(paragraph): |
|
results = process_paragraph(paragraph, progress=progress) |
|
return results |
|
|
|
btn.click(on_click, inputs=input_text, outputs=[output]) |
|
|
|
demo.launch(share=True) |
|
``` |