metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.35
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 2.1821
- Accuracy: 0.35
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2909 | 1.0 | 113 | 2.2939 | 0.16 |
2.2793 | 2.0 | 226 | 2.2789 | 0.2 |
2.2729 | 3.0 | 339 | 2.2617 | 0.19 |
2.2645 | 4.0 | 452 | 2.2446 | 0.28 |
2.2211 | 5.0 | 565 | 2.2290 | 0.29 |
2.2382 | 6.0 | 678 | 2.2162 | 0.31 |
2.2631 | 7.0 | 791 | 2.2039 | 0.31 |
2.247 | 8.0 | 904 | 2.1946 | 0.32 |
2.2255 | 9.0 | 1017 | 2.1877 | 0.33 |
2.1932 | 10.0 | 1130 | 2.1834 | 0.35 |
2.2213 | 11.0 | 1243 | 2.1821 | 0.35 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3