metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-base-fleurs-329-colab-a100-2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: en_us
split: test
args: en_us
metrics:
- name: Wer
type: wer
value: 0.9917617237008872
wav2vec2-base-fleurs-329-colab-a100-2
This model is a fine-tuned version of facebook/wav2vec2-base-960h on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 2.5431
- Wer: 0.9918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.5696 | 2.45 | 200 | 5.0490 | 1.0 |
4.0587 | 4.91 | 400 | 3.3808 | 1.0 |
3.0272 | 7.36 | 600 | 2.7368 | 0.9954 |
2.6659 | 9.82 | 800 | 2.5431 | 0.9918 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2