Edit model card

gpt2-medium-ne

This model is a fine-tuned version of gpt2 on Oscar Dataset.

Model description

This model is trained on Oscar Nepali Dataset.

How to use

You can use this model directly with a pipeline for text generation.

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='Someman/gpt2-medium-ne')
>>> set_seed(42)
>>> generator("उच्च अदालतले बिहीबार दिएको आदेशले", max_length=30, num_return_sequences=5)

[{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले महिनात्रि'},
 {'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले बिहानैदे'},
 {'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गिरिजाली'},
 {'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गरेको प्रथम त'},
 {'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले कुनै साथी'}]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
model = GPT2Model.from_pretrained('Someman/gpt2-medium-ne')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
model = TFGPT2Model.from_pretrained('Someman/gpt2-medium-ne')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

More information needed

Training and evaluation data

Training data contains 197k Nepali sentences.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
24
Safetensors
Model size
138M params
Tensor type
F32
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.