a2c-AntBulletEnv-v0 / README.md
SimingSiming's picture
Update README.md
003ee63
metadata
library_name: stable-baselines3
tags:
  - AntBulletEnv-v0
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: A2C
    results:
      - metrics:
          - type: mean_reward
            value: 1218.38 +/- 203.74
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: AntBulletEnv-v0
          type: AntBulletEnv-v0

A2C Agent playing AntBulletEnv-v0

This is a trained model of a A2C agent playing AntBulletEnv-v0 using the stable-baselines3 library.

Usage (with Stable-baselines3)

parameters

model = A2C(policy = "MlpPolicy",
            env = env,
            gae_lambda = 0.9,
            gamma = 0.99,
            learning_rate = 0.00096,
            max_grad_norm = 0.5,
            n_steps = 8,
            vf_coef = 0.4,
            ent_coef = 0.0,
            tensorboard_log = "./tensorboard",
            policy_kwargs=dict(
            log_std_init=-2, ortho_init=False),
            normalize_advantage=False,
            use_rms_prop= True,
            use_sde= True,
            verbose=1)
...