File size: 12,206 Bytes
187e6c3 8c4cf8f 0dedab1 8c4cf8f c78423d 773e6fc b928e81 773e6fc b928e81 773e6fc 0dedab1 92c6619 0dedab1 92c6619 0dedab1 92c6619 0dedab1 92c6619 0dedab1 92c6619 0dedab1 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 32dbae5 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d b2a6385 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d 187e6c3 c78423d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
---
library_name: transformers
tags:
- medical
- trl
- trainer
license: apache-2.0
thumbnail: https://huggingface.co/ShieldX/manovyadh-1.1B-v1-chat/blob/main/manovyadh.png
datasets:
- ShieldX/manovyadh-3.5k
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
widget:
- text: >
###SYSTEM: You are an AI assistant that helps people cope with stress and improve their mental health. User will tell you about their feelings and challenges. Your task is to listen empathetically and offer helpful suggestions. While responding, think about the user’s needs and goals and show compassion and support
###USER: I don't know how to tell someone how I feel about them. How can I get better at expressing how I feel??
###ASSISTANT:
model-index:
- name: manovyadh-1.1B-v1-chat
results:
- task:
type: text-generation
dataset:
name: ai2_arc
type: arc
metrics:
- name: pass@1
type: pass@1
value: 35.92
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- task:
type: text-generation
dataset:
name: hellaswag
type: hellaswag
metrics:
- name: pass@1
type: pass@1
value: 60.03
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- task:
type: text-generation
dataset:
name: truthful_qa
type: truthful_qa
metrics:
- name: pass@1
type: pass@1
value: 39.17
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- task:
type: text-generation
dataset:
name: winogrande
type: winogrande
metrics:
- name: pass@1
type: pass@1
value: 61.09
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
---
# Uploaded model
- **Developed by:** ShieldX
- **License:** apache-2.0
- **Finetuned from model :** TinyLlama/TinyLlama-1.1B-Chat-v1.0
<style>
img{
width: 40vw;
height: auto;
margin: 0 auto;
display: flex;
align-items: center;
justify-content: center;
}
</style>
# ShieldX/manovyadh-1.1B-v1
Introducing ManoVyadh, A finetuned version of TinyLlama 1.1B Chat on Mental Health Counselling Dataset.
<img class="custom-image" src="manovyadh.png" alt="BongLlama">
# Model Details
## Model Description
ManoVyadh is a LLM for mental health counselling.
# Uses
## Direct Use
- base model for further finetuning
- for fun
## Downstream Use
- can be deployed with api
- used to create webapp or app to show demo
## Out-of-Scope Use
- cannot be used for production purpose
- not to be applied in real life health purpose
- cannot be used to generate text for research or academic purposes
# Usage
```
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
tokenizer = AutoTokenizer.from_pretrained("ShieldX/manovyadh-1.1B-v1-chat")
model = AutoModelForCausalLM.from_pretrained("ShieldX/manovyadh-1.1B-v1-chat").to("cuda")
config = AutoConfig.from_pretrained("ShieldX/manovyadh-1.1B-v1-chat")
def format_prompt(q):
return f"""###SYSTEM: You are an AI assistant that helps people cope with stress and improve their mental health. User will tell you about their feelings and challenges. Your task is to listen empathetically and offer helpful suggestions. While responding, think about the user’s needs and goals and show compassion and support
###USER: {q}
###ASSISTANT:"""
prompt = format_prompt("I've never been able to talk with my parents. My parents are in their sixties while I am a teenager. I love both of them but not their personalities. I feel that they do not take me seriously whenever I talk about a serious event in my life. If my dad doesn’t believe me, then my mom goes along with my dad and acts like she doesn’t believe me either. I’m a pansexual, but I can’t trust my own parents. I've fought depression and won; however, stress and anxiety are killing me. I feel that my friends don't listen to me. I know they have their own problems, which I do my best to help with. But they don't always try to help me with mine, when I really need them. I feel as if my childhood has been taken from me. I feel as if I have no one whom I can trust.")
import torch
from transformers import GenerationConfig, TextStreamer
from time import perf_counter
# Check for GPU availability
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Move model and inputs to the GPU (if available)
model.to(device)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
streamer = TextStreamer(tokenizer)
generation_config = GenerationConfig(
penalty_alpha=0.6,
do_sample=True,
top_k=5,
temperature=0.5,
repetition_penalty=1.2,
max_new_tokens=256,
streamer=streamer,
pad_token_id=tokenizer.eos_token_id
)
start_time = perf_counter()
outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time, 2)} seconds")
```
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
# Training Details
# Model Examination
We will be further finetuning this model on large dataset to see how it performs
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 1 X Tesla T4
- **Hours used:** 0.48
- **Cloud Provider:** Google Colab
- **Compute Region:** India
# Technical Specifications
## Model Architecture and Objective
Finetuned on Tiny-Llama 1.1B Chat model
### Hardware
1 X Tesla T4
# training
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on [ShieldX/manovyadh-3.5k](https://huggingface.co/datasets/ShieldX/manovyadh-3.5k) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8587
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
- mixed_precision_training: Native AMP
-
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5894 | 0.01 | 5 | 2.5428 |
| 2.5283 | 0.02 | 10 | 2.5240 |
| 2.5013 | 0.03 | 15 | 2.5033 |
| 2.378 | 0.05 | 20 | 2.4770 |
| 2.3735 | 0.06 | 25 | 2.4544 |
| 2.3894 | 0.07 | 30 | 2.4335 |
| 2.403 | 0.08 | 35 | 2.4098 |
| 2.3719 | 0.09 | 40 | 2.3846 |
| 2.3691 | 0.1 | 45 | 2.3649 |
| 2.3088 | 0.12 | 50 | 2.3405 |
| 2.3384 | 0.13 | 55 | 2.3182 |
| 2.2577 | 0.14 | 60 | 2.2926 |
| 2.245 | 0.15 | 65 | 2.2702 |
| 2.1389 | 0.16 | 70 | 2.2457 |
| 2.1482 | 0.17 | 75 | 2.2176 |
| 2.1567 | 0.18 | 80 | 2.1887 |
| 2.1533 | 0.2 | 85 | 2.1616 |
| 2.0629 | 0.21 | 90 | 2.1318 |
| 2.1068 | 0.22 | 95 | 2.0995 |
| 2.0196 | 0.23 | 100 | 2.0740 |
| 2.062 | 0.24 | 105 | 2.0461 |
| 1.9436 | 0.25 | 110 | 2.0203 |
| 1.9348 | 0.26 | 115 | 1.9975 |
| 1.8803 | 0.28 | 120 | 1.9747 |
| 1.9108 | 0.29 | 125 | 1.9607 |
| 1.7826 | 0.3 | 130 | 1.9506 |
| 1.906 | 0.31 | 135 | 1.9374 |
| 1.8745 | 0.32 | 140 | 1.9300 |
| 1.8634 | 0.33 | 145 | 1.9232 |
| 1.8561 | 0.35 | 150 | 1.9183 |
| 1.8371 | 0.36 | 155 | 1.9147 |
| 1.8006 | 0.37 | 160 | 1.9106 |
| 1.8941 | 0.38 | 165 | 1.9069 |
| 1.8456 | 0.39 | 170 | 1.9048 |
| 1.8525 | 0.4 | 175 | 1.9014 |
| 1.8475 | 0.41 | 180 | 1.8998 |
| 1.8255 | 0.43 | 185 | 1.8962 |
| 1.9358 | 0.44 | 190 | 1.8948 |
| 1.758 | 0.45 | 195 | 1.8935 |
| 1.7859 | 0.46 | 200 | 1.8910 |
| 1.8412 | 0.47 | 205 | 1.8893 |
| 1.835 | 0.48 | 210 | 1.8875 |
| 1.8739 | 0.49 | 215 | 1.8860 |
| 1.9397 | 0.51 | 220 | 1.8843 |
| 1.8187 | 0.52 | 225 | 1.8816 |
| 1.8174 | 0.53 | 230 | 1.8807 |
| 1.8 | 0.54 | 235 | 1.8794 |
| 1.7736 | 0.55 | 240 | 1.8772 |
| 1.7429 | 0.56 | 245 | 1.8778 |
| 1.8024 | 0.58 | 250 | 1.8742 |
| 1.8431 | 0.59 | 255 | 1.8731 |
| 1.7692 | 0.6 | 260 | 1.8706 |
| 1.8084 | 0.61 | 265 | 1.8698 |
| 1.7602 | 0.62 | 270 | 1.8705 |
| 1.7751 | 0.63 | 275 | 1.8681 |
| 1.7403 | 0.64 | 280 | 1.8672 |
| 1.8078 | 0.66 | 285 | 1.8648 |
| 1.8464 | 0.67 | 290 | 1.8648 |
| 1.7853 | 0.68 | 295 | 1.8651 |
| 1.8546 | 0.69 | 300 | 1.8643 |
| 1.8319 | 0.7 | 305 | 1.8633 |
| 1.7908 | 0.71 | 310 | 1.8614 |
| 1.738 | 0.72 | 315 | 1.8625 |
| 1.8868 | 0.74 | 320 | 1.8630 |
| 1.7744 | 0.75 | 325 | 1.8621 |
| 1.8292 | 0.76 | 330 | 1.8609 |
| 1.7905 | 0.77 | 335 | 1.8623 |
| 1.7652 | 0.78 | 340 | 1.8610 |
| 1.8371 | 0.79 | 345 | 1.8611 |
| 1.7024 | 0.81 | 350 | 1.8593 |
| 1.7328 | 0.82 | 355 | 1.8593 |
| 1.7376 | 0.83 | 360 | 1.8606 |
| 1.747 | 0.84 | 365 | 1.8601 |
| 1.7777 | 0.85 | 370 | 1.8602 |
| 1.8701 | 0.86 | 375 | 1.8598 |
| 1.7165 | 0.87 | 380 | 1.8579 |
| 1.779 | 0.89 | 385 | 1.8588 |
| 1.8536 | 0.9 | 390 | 1.8583 |
| 1.7263 | 0.91 | 395 | 1.8582 |
| 1.7983 | 0.92 | 400 | 1.8587 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
# Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{ShieldX/manovyadh-1.1B-v1-chat,
url={[https://huggingface.co/ShieldX/manovyadh-1.1B-v1-chat](https://huggingface.co/ShieldX/manovyadh-1.1B-v1-chat)},
title={ManoVyadh},
author={Rohan Shaw},
year={2024}, month={Jan}
}
```
# Model Card Authors
ShieldX a.k.a Rohan Shaw
# Model Card Contact
email : [email protected] |