Update README.md
Browse files
README.md
CHANGED
@@ -12,199 +12,224 @@ language:
|
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
pipeline_tag: text-generation
|
|
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
-
|
24 |
|
25 |
-
### Model Description
|
26 |
|
27 |
-
|
28 |
|
29 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
30 |
|
31 |
-
|
32 |
-
- **Funded by [optional]:** [More Information Needed]
|
33 |
-
- **Shared by [optional]:** [More Information Needed]
|
34 |
-
- **Model type:** [More Information Needed]
|
35 |
-
- **Language(s) (NLP):** [More Information Needed]
|
36 |
-
- **License:** [More Information Needed]
|
37 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
- **Paper [optional]:** [More Information Needed]
|
45 |
-
- **Demo [optional]:** [More Information Needed]
|
46 |
|
47 |
-
##
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
### Direct Use
|
52 |
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
-
[More Information Needed]
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
[More Information Needed]
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
### Recommendations
|
76 |
-
|
77 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
78 |
-
|
79 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
80 |
-
|
81 |
-
## How to Get Started with the Model
|
82 |
-
|
83 |
-
Use the code below to get started with the model.
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
-
|
87 |
-
## Training Details
|
88 |
-
|
89 |
-
### Training Data
|
90 |
-
|
91 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
92 |
-
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
### Training Procedure
|
96 |
-
|
97 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
98 |
-
|
99 |
-
#### Preprocessing [optional]
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
|
104 |
-
#### Training Hyperparameters
|
105 |
-
|
106 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
107 |
-
|
108 |
-
#### Speeds, Sizes, Times [optional]
|
109 |
-
|
110 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
## Evaluation
|
115 |
-
|
116 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
117 |
-
|
118 |
-
### Testing Data, Factors & Metrics
|
119 |
-
|
120 |
-
#### Testing Data
|
121 |
-
|
122 |
-
<!-- This should link to a Dataset Card if possible. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
#### Factors
|
127 |
-
|
128 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Metrics
|
133 |
-
|
134 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
135 |
-
|
136 |
-
[More Information Needed]
|
137 |
-
|
138 |
-
### Results
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
#### Summary
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
## Model Examination [optional]
|
147 |
-
|
148 |
-
<!-- Relevant interpretability work for the model goes here -->
|
149 |
-
|
150 |
-
[More Information Needed]
|
151 |
-
|
152 |
-
## Environmental Impact
|
153 |
-
|
154 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
155 |
|
156 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
157 |
|
158 |
-
- **Hardware Type:**
|
159 |
-
- **Hours used:**
|
160 |
-
- **Cloud Provider:**
|
161 |
-
- **Compute Region:**
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
185 |
|
186 |
**BibTeX:**
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
197 |
-
|
198 |
-
[More Information Needed]
|
199 |
-
|
200 |
-
## More Information [optional]
|
201 |
-
|
202 |
-
[More Information Needed]
|
203 |
|
204 |
-
|
205 |
|
206 |
-
|
207 |
|
208 |
-
|
209 |
|
210 |
-
|
|
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
pipeline_tag: text-generation
|
15 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
16 |
---
|
17 |
|
18 |
+
# Uploaded model
|
19 |
|
20 |
+
- **Developed by:** ShieldX
|
21 |
+
- **License:** apache-2.0
|
22 |
+
- **Finetuned from model :** TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
23 |
|
24 |
+
<style>
|
25 |
+
img{
|
26 |
+
width: 40vw;
|
27 |
+
height: auto;
|
28 |
+
margin: 0 auto;
|
29 |
+
display: flex;
|
30 |
+
align-items: center;
|
31 |
+
justify-content: center;
|
32 |
+
}
|
33 |
+
</style>
|
34 |
|
35 |
+
# ShieldX/manovyadh-1.1B-v1
|
36 |
|
37 |
+
Introducing ManoVyadh, A finetuned version of TinyLlama 1.1B Chat on Mental Health Counselling Dataset.
|
38 |
|
|
|
39 |
|
40 |
+
<img class="custom-image" src="manovyadh.png" alt="BongLlama">
|
41 |
|
|
|
42 |
|
43 |
+
# Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
## Model Description
|
46 |
|
47 |
+
ManoVyadh is a LLM for mental health counselling.
|
48 |
|
49 |
+
# Uses
|
|
|
|
|
50 |
|
51 |
+
## Direct Use
|
52 |
|
53 |
+
- base model for further finetuning
|
54 |
+
- for fun
|
55 |
|
|
|
56 |
|
57 |
+
## Downstream Use
|
58 |
+
|
59 |
+
- can be deployed with api
|
60 |
+
- used to create webapp or app to show demo
|
61 |
|
|
|
62 |
|
63 |
+
## Out-of-Scope Use
|
64 |
|
65 |
+
- cannot be used for production purpose
|
66 |
+
- not to be applied in real life health purpose
|
67 |
+
- cannot be used to generate text for research or academic purposes
|
68 |
|
|
|
69 |
|
70 |
+
# Bias, Risks, and Limitations
|
71 |
|
72 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
73 |
|
74 |
+
# Training Details
|
75 |
|
76 |
+
# Model Examination
|
77 |
|
78 |
+
We will be further finetuning this model on large dataset to see how it performs
|
79 |
|
80 |
+
# Environmental Impact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
83 |
|
84 |
+
- **Hardware Type:** 1 X Tesla T4
|
85 |
+
- **Hours used:** 0.48
|
86 |
+
- **Cloud Provider:** Google Colab
|
87 |
+
- **Compute Region:** India
|
88 |
+
|
89 |
+
# Technical Specifications
|
90 |
+
|
91 |
+
## Model Architecture and Objective
|
92 |
+
|
93 |
+
Finetuned on Tiny-Llama 1.1B Chat model
|
94 |
+
|
95 |
+
### Hardware
|
96 |
+
|
97 |
+
1 X Tesla T4
|
98 |
+
|
99 |
+
# training
|
100 |
+
|
101 |
+
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on [ShieldX/manovyadh-3.5k](https://huggingface.co/datasets/ShieldX/manovyadh-3.5k) dataset.
|
102 |
+
It achieves the following results on the evaluation set:
|
103 |
+
- Loss: 1.8587
|
104 |
+
|
105 |
+
## Training procedure
|
106 |
+
|
107 |
+
### Training hyperparameters
|
108 |
+
|
109 |
+
The following hyperparameters were used during training:
|
110 |
+
- learning_rate: 2.5e-05
|
111 |
+
- train_batch_size: 2
|
112 |
+
- eval_batch_size: 8
|
113 |
+
- seed: 42
|
114 |
+
- gradient_accumulation_steps: 4
|
115 |
+
- total_train_batch_size: 8
|
116 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
117 |
+
- lr_scheduler_type: linear
|
118 |
+
- training_steps: 400
|
119 |
+
- mixed_precision_training: Native AMP
|
120 |
+
-
|
121 |
+
### Training results
|
122 |
+
|
123 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
124 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
125 |
+
| 2.5894 | 0.01 | 5 | 2.5428 |
|
126 |
+
| 2.5283 | 0.02 | 10 | 2.5240 |
|
127 |
+
| 2.5013 | 0.03 | 15 | 2.5033 |
|
128 |
+
| 2.378 | 0.05 | 20 | 2.4770 |
|
129 |
+
| 2.3735 | 0.06 | 25 | 2.4544 |
|
130 |
+
| 2.3894 | 0.07 | 30 | 2.4335 |
|
131 |
+
| 2.403 | 0.08 | 35 | 2.4098 |
|
132 |
+
| 2.3719 | 0.09 | 40 | 2.3846 |
|
133 |
+
| 2.3691 | 0.1 | 45 | 2.3649 |
|
134 |
+
| 2.3088 | 0.12 | 50 | 2.3405 |
|
135 |
+
| 2.3384 | 0.13 | 55 | 2.3182 |
|
136 |
+
| 2.2577 | 0.14 | 60 | 2.2926 |
|
137 |
+
| 2.245 | 0.15 | 65 | 2.2702 |
|
138 |
+
| 2.1389 | 0.16 | 70 | 2.2457 |
|
139 |
+
| 2.1482 | 0.17 | 75 | 2.2176 |
|
140 |
+
| 2.1567 | 0.18 | 80 | 2.1887 |
|
141 |
+
| 2.1533 | 0.2 | 85 | 2.1616 |
|
142 |
+
| 2.0629 | 0.21 | 90 | 2.1318 |
|
143 |
+
| 2.1068 | 0.22 | 95 | 2.0995 |
|
144 |
+
| 2.0196 | 0.23 | 100 | 2.0740 |
|
145 |
+
| 2.062 | 0.24 | 105 | 2.0461 |
|
146 |
+
| 1.9436 | 0.25 | 110 | 2.0203 |
|
147 |
+
| 1.9348 | 0.26 | 115 | 1.9975 |
|
148 |
+
| 1.8803 | 0.28 | 120 | 1.9747 |
|
149 |
+
| 1.9108 | 0.29 | 125 | 1.9607 |
|
150 |
+
| 1.7826 | 0.3 | 130 | 1.9506 |
|
151 |
+
| 1.906 | 0.31 | 135 | 1.9374 |
|
152 |
+
| 1.8745 | 0.32 | 140 | 1.9300 |
|
153 |
+
| 1.8634 | 0.33 | 145 | 1.9232 |
|
154 |
+
| 1.8561 | 0.35 | 150 | 1.9183 |
|
155 |
+
| 1.8371 | 0.36 | 155 | 1.9147 |
|
156 |
+
| 1.8006 | 0.37 | 160 | 1.9106 |
|
157 |
+
| 1.8941 | 0.38 | 165 | 1.9069 |
|
158 |
+
| 1.8456 | 0.39 | 170 | 1.9048 |
|
159 |
+
| 1.8525 | 0.4 | 175 | 1.9014 |
|
160 |
+
| 1.8475 | 0.41 | 180 | 1.8998 |
|
161 |
+
| 1.8255 | 0.43 | 185 | 1.8962 |
|
162 |
+
| 1.9358 | 0.44 | 190 | 1.8948 |
|
163 |
+
| 1.758 | 0.45 | 195 | 1.8935 |
|
164 |
+
| 1.7859 | 0.46 | 200 | 1.8910 |
|
165 |
+
| 1.8412 | 0.47 | 205 | 1.8893 |
|
166 |
+
| 1.835 | 0.48 | 210 | 1.8875 |
|
167 |
+
| 1.8739 | 0.49 | 215 | 1.8860 |
|
168 |
+
| 1.9397 | 0.51 | 220 | 1.8843 |
|
169 |
+
| 1.8187 | 0.52 | 225 | 1.8816 |
|
170 |
+
| 1.8174 | 0.53 | 230 | 1.8807 |
|
171 |
+
| 1.8 | 0.54 | 235 | 1.8794 |
|
172 |
+
| 1.7736 | 0.55 | 240 | 1.8772 |
|
173 |
+
| 1.7429 | 0.56 | 245 | 1.8778 |
|
174 |
+
| 1.8024 | 0.58 | 250 | 1.8742 |
|
175 |
+
| 1.8431 | 0.59 | 255 | 1.8731 |
|
176 |
+
| 1.7692 | 0.6 | 260 | 1.8706 |
|
177 |
+
| 1.8084 | 0.61 | 265 | 1.8698 |
|
178 |
+
| 1.7602 | 0.62 | 270 | 1.8705 |
|
179 |
+
| 1.7751 | 0.63 | 275 | 1.8681 |
|
180 |
+
| 1.7403 | 0.64 | 280 | 1.8672 |
|
181 |
+
| 1.8078 | 0.66 | 285 | 1.8648 |
|
182 |
+
| 1.8464 | 0.67 | 290 | 1.8648 |
|
183 |
+
| 1.7853 | 0.68 | 295 | 1.8651 |
|
184 |
+
| 1.8546 | 0.69 | 300 | 1.8643 |
|
185 |
+
| 1.8319 | 0.7 | 305 | 1.8633 |
|
186 |
+
| 1.7908 | 0.71 | 310 | 1.8614 |
|
187 |
+
| 1.738 | 0.72 | 315 | 1.8625 |
|
188 |
+
| 1.8868 | 0.74 | 320 | 1.8630 |
|
189 |
+
| 1.7744 | 0.75 | 325 | 1.8621 |
|
190 |
+
| 1.8292 | 0.76 | 330 | 1.8609 |
|
191 |
+
| 1.7905 | 0.77 | 335 | 1.8623 |
|
192 |
+
| 1.7652 | 0.78 | 340 | 1.8610 |
|
193 |
+
| 1.8371 | 0.79 | 345 | 1.8611 |
|
194 |
+
| 1.7024 | 0.81 | 350 | 1.8593 |
|
195 |
+
| 1.7328 | 0.82 | 355 | 1.8593 |
|
196 |
+
| 1.7376 | 0.83 | 360 | 1.8606 |
|
197 |
+
| 1.747 | 0.84 | 365 | 1.8601 |
|
198 |
+
| 1.7777 | 0.85 | 370 | 1.8602 |
|
199 |
+
| 1.8701 | 0.86 | 375 | 1.8598 |
|
200 |
+
| 1.7165 | 0.87 | 380 | 1.8579 |
|
201 |
+
| 1.779 | 0.89 | 385 | 1.8588 |
|
202 |
+
| 1.8536 | 0.9 | 390 | 1.8583 |
|
203 |
+
| 1.7263 | 0.91 | 395 | 1.8582 |
|
204 |
+
| 1.7983 | 0.92 | 400 | 1.8587 |
|
205 |
+
|
206 |
+
|
207 |
+
### Framework versions
|
208 |
+
- PEFT 0.7.1
|
209 |
+
- Transformers 4.37.1
|
210 |
+
- Pytorch 2.1.0+cu121
|
211 |
+
- Datasets 2.16.1
|
212 |
+
- Tokenizers 0.15.1
|
213 |
+
|
214 |
+
# Citation
|
215 |
|
216 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
217 |
|
218 |
**BibTeX:**
|
219 |
|
220 |
+
```
|
221 |
+
@misc{ShieldX/manovyadh-1.1B-v1,
|
222 |
+
url={[https://huggingface.co/ShieldX/manovyadh-1.1B-v1](https://huggingface.co/ShieldX/manovyadh-1.1B-v1)},
|
223 |
+
title={ManoVyadh},
|
224 |
+
author={Rohan Shaw},
|
225 |
+
year={2024}, month={Jan}
|
226 |
+
}
|
227 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
# Model Card Authors
|
230 |
|
231 |
+
ShieldX a.k.a Rohan Shaw
|
232 |
|
233 |
+
# Model Card Contact
|
234 |
|
235 |
+
email : [email protected]
|