SeyedAli's picture
Update README.md
c3b62fe
|
raw
history blame
3.2 kB
metadata
base_model: HooshvareLab/bert-base-parsbert-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: Persian-Text-Sentiment-Bert-LORA
    results: []
license: mit
language:
  - fa
library_name: peft
pipeline_tag: text-classification
datasets:
  - SeyedAli/Persian-Text-Sentiment

Persian-Text-Sentiment-Bert-LORA

This model is a Adapter for HooshvareLab/bert-base-parsbert-uncased on SeyedAli/Persian-Text-Sentiment dataset in Persian Sentment Analysis Task. It achieves the following results on the evaluation set:

  • Loss: 0.3427
  • Precision: 0.8579
  • Recall: 0.8543
  • F1-score: 0.8540
  • Accuracy: 0.8543

Model description

More information needed

Intended uses & limitations

This is how to use this model in an example

from peft import PeftModel
from transformers import pipeline
modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA"
tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
model = PeftModel.from_pretrained(model, modelname)
pipe = pipeline("text-classification", model=model,tokenizer=tokenizer)
pipe('خیلی کتاب خوبی بود')

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.3939 1.0 3491 0.3835 0.8457 0.8404 0.8398 0.8404
0.3722 2.0 6982 0.3677 0.8513 0.8457 0.8451 0.8457
0.3553 3.0 10473 0.3576 0.8539 0.8495 0.8491 0.8495
0.3618 4.0 13964 0.3525 0.8546 0.8513 0.8509 0.8513
0.3534 5.0 17455 0.3485 0.8557 0.8521 0.8517 0.8521
0.3423 6.0 20946 0.3470 0.8562 0.8530 0.8526 0.8530
0.3455 7.0 24437 0.3453 0.8573 0.8535 0.8531 0.8535
0.347 8.0 27928 0.3428 0.8575 0.8539 0.8535 0.8539
0.344 9.0 31419 0.3429 0.8578 0.8546 0.8542 0.8546
0.335 10.0 34910 0.3427 0.8579 0.8543 0.8540 0.8543

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1