Edit model card

t5-small-entailement-Writer

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 42 1.8511
No log 2.0 84 1.2249
No log 3.0 126 0.9976
No log 4.0 168 0.9108
No log 5.0 210 0.8478
No log 6.0 252 0.8186
No log 7.0 294 0.7965
No log 8.0 336 0.7815
No log 9.0 378 0.7634
No log 10.0 420 0.7544
No log 11.0 462 0.7408
1.2198 12.0 504 0.7298
1.2198 13.0 546 0.7240
1.2198 14.0 588 0.7139
1.2198 15.0 630 0.7070
1.2198 16.0 672 0.7028
1.2198 17.0 714 0.6977
1.2198 18.0 756 0.6926
1.2198 19.0 798 0.6906
1.2198 20.0 840 0.6846
1.2198 21.0 882 0.6822
1.2198 22.0 924 0.6760
1.2198 23.0 966 0.6710
0.7403 24.0 1008 0.6667
0.7403 25.0 1050 0.6657
0.7403 26.0 1092 0.6653
0.7403 27.0 1134 0.6588
0.7403 28.0 1176 0.6584
0.7403 29.0 1218 0.6573
0.7403 30.0 1260 0.6520
0.7403 31.0 1302 0.6522
0.7403 32.0 1344 0.6525
0.7403 33.0 1386 0.6463
0.7403 34.0 1428 0.6453
0.7403 35.0 1470 0.6437
0.6642 36.0 1512 0.6397
0.6642 37.0 1554 0.6382
0.6642 38.0 1596 0.6365
0.6642 39.0 1638 0.6332
0.6642 40.0 1680 0.6335
0.6642 41.0 1722 0.6325
0.6642 42.0 1764 0.6295
0.6642 43.0 1806 0.6304
0.6642 44.0 1848 0.6287
0.6642 45.0 1890 0.6272
0.6642 46.0 1932 0.6267
0.6642 47.0 1974 0.6242
0.6127 48.0 2016 0.6232
0.6127 49.0 2058 0.6225
0.6127 50.0 2100 0.6211
0.6127 51.0 2142 0.6204
0.6127 52.0 2184 0.6196
0.6127 53.0 2226 0.6183
0.6127 54.0 2268 0.6168
0.6127 55.0 2310 0.6175
0.6127 56.0 2352 0.6160
0.6127 57.0 2394 0.6154
0.6127 58.0 2436 0.6143
0.6127 59.0 2478 0.6142
0.5799 60.0 2520 0.6131
0.5799 61.0 2562 0.6122
0.5799 62.0 2604 0.6120
0.5799 63.0 2646 0.6115
0.5799 64.0 2688 0.6119
0.5799 65.0 2730 0.6112
0.5799 66.0 2772 0.6099
0.5799 67.0 2814 0.6094
0.5799 68.0 2856 0.6082
0.5799 69.0 2898 0.6092
0.5799 70.0 2940 0.6081
0.5799 71.0 2982 0.6071
0.5558 72.0 3024 0.6062
0.5558 73.0 3066 0.6079
0.5558 74.0 3108 0.6072
0.5558 75.0 3150 0.6052
0.5558 76.0 3192 0.6066
0.5558 77.0 3234 0.6049
0.5558 78.0 3276 0.6042
0.5558 79.0 3318 0.6039
0.5558 80.0 3360 0.6050
0.5558 81.0 3402 0.6042
0.5558 82.0 3444 0.6040
0.5558 83.0 3486 0.6029
0.5292 84.0 3528 0.6032
0.5292 85.0 3570 0.6039
0.5292 86.0 3612 0.6036
0.5292 87.0 3654 0.6019
0.5292 88.0 3696 0.6014
0.5292 89.0 3738 0.6022
0.5292 90.0 3780 0.6014
0.5292 91.0 3822 0.6020
0.5292 92.0 3864 0.6028
0.5292 93.0 3906 0.5994
0.5292 94.0 3948 0.6004
0.5292 95.0 3990 0.5987
0.5159 96.0 4032 0.5992
0.5159 97.0 4074 0.5993
0.5159 98.0 4116 0.5989
0.5159 99.0 4158 0.6004
0.5159 100.0 4200 0.6001
0.5159 101.0 4242 0.6008
0.5159 102.0 4284 0.6006
0.5159 103.0 4326 0.5999
0.5159 104.0 4368 0.5994
0.5159 105.0 4410 0.5996
0.5159 106.0 4452 0.5991
0.5159 107.0 4494 0.5990
0.5004 108.0 4536 0.5996
0.5004 109.0 4578 0.5988
0.5004 110.0 4620 0.5992
0.5004 111.0 4662 0.5984
0.5004 112.0 4704 0.5982
0.5004 113.0 4746 0.5973
0.5004 114.0 4788 0.5984
0.5004 115.0 4830 0.5973
0.5004 116.0 4872 0.5977
0.5004 117.0 4914 0.5970
0.5004 118.0 4956 0.5976
0.5004 119.0 4998 0.5962
0.488 120.0 5040 0.5969
0.488 121.0 5082 0.5965
0.488 122.0 5124 0.5969
0.488 123.0 5166 0.5972
0.488 124.0 5208 0.5966
0.488 125.0 5250 0.5962
0.488 126.0 5292 0.5966
0.488 127.0 5334 0.5960
0.488 128.0 5376 0.5969
0.488 129.0 5418 0.5960
0.488 130.0 5460 0.5960
0.483 131.0 5502 0.5960
0.483 132.0 5544 0.5965
0.483 133.0 5586 0.5965
0.483 134.0 5628 0.5963
0.483 135.0 5670 0.5965
0.483 136.0 5712 0.5962
0.483 137.0 5754 0.5963
0.483 138.0 5796 0.5961
0.483 139.0 5838 0.5963
0.483 140.0 5880 0.5964
0.483 141.0 5922 0.5957
0.483 142.0 5964 0.5957
0.4809 143.0 6006 0.5957
0.4809 144.0 6048 0.5956
0.4809 145.0 6090 0.5958
0.4809 146.0 6132 0.5958
0.4809 147.0 6174 0.5959
0.4809 148.0 6216 0.5958
0.4809 149.0 6258 0.5958
0.4809 150.0 6300 0.5958

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.