Edit model card

hubert-large-ls960-ft-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7096
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2623 1.0 56 2.2399 0.21
1.881 1.99 112 1.7105 0.41
1.5793 2.99 168 1.6203 0.46
1.3018 4.0 225 1.3824 0.52
1.0219 5.0 281 0.9899 0.66
0.9047 5.99 337 0.8812 0.74
0.8353 6.99 393 0.7629 0.78
0.659 8.0 450 0.9674 0.71
0.645 9.0 506 0.8953 0.74
0.6233 9.99 562 0.6638 0.8
0.4155 10.99 618 0.6323 0.81
0.2689 12.0 675 0.5423 0.83
0.3714 13.0 731 0.6770 0.83
0.0692 13.99 787 0.6260 0.83
0.0778 14.99 843 0.5801 0.85
0.187 16.0 900 0.6722 0.83
0.1469 17.0 956 0.7473 0.85
0.1052 17.92 1008 0.7096 0.85

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
23
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sandiago21/hubert-large-ls960-ft-finetuned-gtzan

Finetuned
(20)
this model

Dataset used to train Sandiago21/hubert-large-ls960-ft-finetuned-gtzan