|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-50 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: SaladSlayer00/image_classification_resnet |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# SaladSlayer00/image_classification_resnet |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 1.2581 |
|
- Validation Loss: 1.6399 |
|
- Validation Accuracy: 0.5823 |
|
- Epoch: 11 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:---------------:|:-------------------:|:-----:| |
|
| 7.0750 | 4.8746 | 0.0090 | 0 | |
|
| 4.6468 | 4.5229 | 0.0538 | 1 | |
|
| 4.3211 | 4.1033 | 0.1209 | 2 | |
|
| 3.8784 | 3.6736 | 0.1859 | 3 | |
|
| 3.4274 | 3.2193 | 0.2419 | 4 | |
|
| 3.0071 | 2.8524 | 0.3012 | 5 | |
|
| 2.6239 | 2.5632 | 0.3651 | 6 | |
|
| 2.2925 | 2.2959 | 0.4233 | 7 | |
|
| 1.9792 | 2.1138 | 0.4882 | 8 | |
|
| 1.7199 | 1.9271 | 0.5174 | 9 | |
|
| 1.4845 | 1.7643 | 0.5666 | 10 | |
|
| 1.2581 | 1.6399 | 0.5823 | 11 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|