Saire2023's picture
End of training
a465d6c
|
raw
history blame
2.08 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-Speaker-Classification
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: data
          split: test
          args: data
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9834791059280855

wav2vec2-base-finetuned-Speaker-Classification

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0927
  • Accuracy: 0.9835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3234 0.99 102 0.2863 0.9349
0.2465 2.0 205 0.1983 0.9563
0.1184 3.0 308 0.1599 0.9670
0.0753 4.0 411 0.0927 0.9835
0.0549 4.96 510 0.1025 0.9786

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0