metadata
base_model: RefalMachine/ruadapt_qwen2.5_3B_ext_u48_mean_init
library_name: peft
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: ruadapt_qwen2.5_3B_ext_u48_full_lr5e4_peft_bs256
results: []
ruadapt_qwen2.5_3B_ext_u48_full_lr5e4_peft_bs256
This model is a fine-tuned version of RefalMachine/ruadapt_qwen2.5_3B_ext_u48_mean_init on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3657
- Accuracy: 0.5115
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.0001 | 1 | 5.8817 | 0.3107 |
2.556 | 0.1765 | 2000 | 2.4191 | 0.5046 |
2.5196 | 0.3531 | 4000 | 2.3900 | 0.5084 |
2.4919 | 0.5296 | 6000 | 2.3754 | 0.5103 |
2.4884 | 0.7062 | 8000 | 2.3676 | 0.5112 |
2.4865 | 0.8827 | 10000 | 2.3658 | 0.5115 |
Framework versions
- PEFT 0.9.0
- Transformers 4.45.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.20.1