RefalMachine's picture
Upload folder using huggingface_hub
7b55f92 verified
|
raw
history blame
2.03 kB
metadata
library_name: transformers
base_model: RefalMachine/ruadapt_qwen2.5_3B_ext_u48_mean_init
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ruadapt_qwen2.5_3B_ext_u48_full_lr5e4_bs256
    results: []

ruadapt_qwen2.5_3B_ext_u48_full_lr5e4_bs256

This model is a fine-tuned version of RefalMachine/ruadapt_qwen2.5_3B_ext_u48_mean_init on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4378
  • Accuracy: 0.5028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0001 1 5.8817 0.3107
2.6109 0.1765 2000 2.4807 0.4971
2.5789 0.3531 4000 2.4562 0.5003
2.555 0.5296 6000 2.4452 0.5019
2.5558 0.7062 8000 2.4391 0.5025
2.5535 0.8827 10000 2.4378 0.5029

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
  • Datasets 2.18.0
  • Tokenizers 0.20.1