ppo-LunarLander-v2 / config.json
RadG's picture
Upload PPO LunarLander-v2 trained agent
2343f15 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781477350ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781477350d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781477350dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781477350e50>", "_build": "<function ActorCriticPolicy._build at 0x781477350ee0>", "forward": "<function ActorCriticPolicy.forward at 0x781477350f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781477351000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781477351090>", "_predict": "<function ActorCriticPolicy._predict at 0x781477351120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7814773511b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781477351240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7814773512d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7814d4f49180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709971986813441472, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNCZD3UeL8/PsSrPp6FFD0lju07utFvPQAAAAAAAAAAIB+aPixdhT+aRf8+5Zc4v8wk+z4dXhA+AAAAAAAAAABzxpA9jzZJujXNeDczn3Yy2TU/OcCljrYAAIA/AACAP81v7jz4KM881QO4vfuhk75v+rU9JNA2vgAAAAAAAAAAM+mVPOUeSj6ujzy6a82jvqT7MD0GJe48AAAAAAAAAAAzqtw9zEGjPpa+jr6ghpe+Lxowvntf+r0AAAAAAAAAAJqdMzy71IW8BsI0PZyrBL53rJC9EJY9vwAAgD8AAIA/ZvbLvFfN+z5Vs18+mf3hvnd4KD6oPPY9AAAAAAAAAACzKtM94YDXPYuPYr5JBIi+i3VQvSASETwAAAAAAAAAAHoMMb6mb1I/pwSuPnCQ7r67E+O9QNSWPgAAAAAAAAAAM7TEPOHMorrX2RW2xsQWsY8MzTpz3jk1AACAPwAAgD9mQoA89yQVPoV9Yj1BWbi+HexJPQY9gTsAAAAAAAAAAKanuz1zm44/pLmaPpSCF78mOyI+dMyrPQAAAAAAAAAAMwMSu3YJtj8U3Jm9zZwPPuoqJzsK44k8AAAAAAAAAABmhuM8SC+gulXWKzM5rzKvfhMSucqAyLMAAIA/AACAPxpXRj37Apm8bYiXvfT+O76fZfq88SXEvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsycTakASMAWyUS9iMAXSUR0CbGrY/Vy3kdX2UKGgGR0BzL1rO7g89aAdLyGgIR0CbGzGqxTsIdX2UKGgGR0BwoCFQEZBLaAdL5GgIR0CbHGS26TW5dX2UKGgGR0BxrWo0hvBKaAdL5GgIR0CbHezJIUaidX2UKGgGR0BzfB0V8CxNaAdL2mgIR0CbHhKaoddWdX2UKGgGR0BtyB1RtP56aAdL1mgIR0CbHiX6qKgqdX2UKGgGR0BwuyCkGiYcaAdNEgFoCEdAmx4lPacqfHV9lChoBkdAcP6ZkkKNQ2gHS8hoCEdAmx5FeruIAXV9lChoBkdAbqpJJ5E+gWgHS9xoCEdAmx5auSwGGHV9lChoBkdAbnSCfYjB22gHS+RoCEdAmx5Wzv7WNHV9lChoBkdAcilc9GI9DGgHTQwBaAhHQJsecJlar3l1fZQoaAZHQHAjTf779AJoB0vSaAhHQJsehzT4L1F1fZQoaAZHQHIC9XT3IuJoB0v0aAhHQJse6CJ40Mx1fZQoaAZHQHEZVVghKUVoB0vmaAhHQJsfIGIKtxN1fZQoaAZHQHElB7u2JBRoB0vvaAhHQJsgIQarFOx1fZQoaAZHQHE3/vfCQ91oB0vgaAhHQJsgbGCI1tR1fZQoaAZHQG8cmZE2HcloB0v6aAhHQJshjIGQjlh1fZQoaAZHQHPF9kJ8fFJoB0vVaAhHQJsh2L0jC551fZQoaAZHQHKdOOn2qT9oB0vUaAhHQJsjc2tMfzV1fZQoaAZHQHOCNlyzXz1oB0vMaAhHQJsjf+ZPVNJ1fZQoaAZHQFmt9YwIt19oB03oA2gIR0CbI4EE1VHXdX2UKGgGR0By7Lv2GqPwaAdLzWgIR0CbI4QswtaqdX2UKGgGR0BxxzBtUGVzaAdL1GgIR0CbI6DjR2KVdX2UKGgGR0BxK/4bjtG/aAdL3GgIR0CbI7UHIIWydX2UKGgGR0BzCdTl1bJPaAdL3WgIR0CbI70Yj0L/dX2UKGgGR0Bx1MeT3Zf2aAdL72gIR0CbI/F3IMjNdX2UKGgGR0BwQGIyj59FaAdL3mgIR0CbJI0lJHy3dX2UKGgGR0By8aGDcuanaAdL+WgIR0CbJJZ0CA+ZdX2UKGgGR0BxWUuGsV+JaAdL8GgIR0CbJMJ2MbWFdX2UKGgGR0BuqF8zAN5MaAdNHQFoCEdAmyVzmjj7ynV9lChoBkdAc0ZKP4mCy2gHS99oCEdAmzhi8vmHQHV9lChoBkdAcdGfr8iwCGgHS/BoCEdAmzh7fcer/HV9lChoBkdAcnxneizsyGgHS+loCEdAmzmQbyYoiXV9lChoBkdANnDpkf9xZWgHS69oCEdAmznYEjgQ6XV9lChoBkdAcHvVwPy08mgHS+xoCEdAmznlRxcVxnV9lChoBkdActUxh2GIsWgHS8hoCEdAmzplQIldC3V9lChoBkdAcJ/iQkona2gHS9NoCEdAmzqppFkQPXV9lChoBkdAcbxgCOmzjWgHS99oCEdAmzsrGR3eN3V9lChoBkdAcgyRjBl+VmgHS/hoCEdAmzt8J2MbWHV9lChoBkdAcojWXC0ngGgHS/doCEdAmzugla8pTnV9lChoBkdAcq4CIk7fYWgHS9NoCEdAmzvhL0z0pXV9lChoBkdAcDEIYm9g4WgHS+doCEdAmzxWbTc7AHV9lChoBkdAcQC76Hj6vmgHTRQBaAhHQJs8aesgdOt1fZQoaAZHQHECS7TUiINoB00SAWgIR0CbPKBg/keZdX2UKGgGR0BvlBH3Dej3aAdL6GgIR0CbPRO2iL2pdX2UKGgGR0ByAy6H0se5aAdL/2gIR0CbPRAbADaHdX2UKGgGR0Bv7tHhCMP0aAdL4GgIR0CbPWC4jKPodX2UKGgGR0Bwt4xL0z0paAdL6GgIR0CbPaN96TnrdX2UKGgGR0BwlRywOe8PaAdL0WgIR0CbPn0qYqoZdX2UKGgGR0Bybbl+3H7xaAdL4mgIR0CbPpcR15jZdX2UKGgGR0Bz29Ktga3raAdL1mgIR0CbP+7D2rXEdX2UKGgGR0BxEUrH2h7FaAdL8GgIR0CbQA9P1tfpdX2UKGgGR0B0H+Km8/UwaAdNIAFoCEdAm0Br1qWTo3V9lChoBkdActN9tdiUgWgHTQsBaAhHQJtAeKl54W11fZQoaAZHQHCvUpqh11ZoB0vXaAhHQJtAeJl8PWh1fZQoaAZHQHHp4R7JGONoB0voaAhHQJtAsnndO7B1fZQoaAZHQHDw++mFajhoB0vmaAhHQJtBAvlEJBx1fZQoaAZHQHDRtkvsZ51oB0vGaAhHQJtBee6I3zd1fZQoaAZHQHFYfjXFtKtoB0vsaAhHQJtBpG9YfXB1fZQoaAZHQHDojMvAXVNoB0vPaAhHQJtBsnMMZxd1fZQoaAZHQHIQ4qslsxhoB0vmaAhHQJtBuzu4PPN1fZQoaAZHQHHZ+ZXuE25oB0v/aAhHQJtB+pDNQj51fZQoaAZHQG+az0HyEtdoB0vXaAhHQJtCa51/2Cd1fZQoaAZHQHMglHvttyhoB0v4aAhHQJtC1ri2lVN1fZQoaAZHQHHRhRQ79ydoB0vbaAhHQJtDd1r6+Fl1fZQoaAZHQG/9M1jy4F1oB0vlaAhHQJtDl4FA3UB1fZQoaAZHQHNdvk3juKJoB0vaaAhHQJtEz3Fkxyp1fZQoaAZHQHGlGzjWCmNoB0vcaAhHQJtFaL9/BnB1fZQoaAZHQHFS1loUSIxoB0vdaAhHQJtFcx0uDjB1fZQoaAZHQHAWXT/hl19oB0vgaAhHQJtFfD63y7R1fZQoaAZHQG+70BGQSzxoB0vvaAhHQJtFgsNDtw91fZQoaAZHQHDfMcQyylhoB0vWaAhHQJtFjiYLLIR1fZQoaAZHQHJvTbvgFX9oB0vEaAhHQJtGEzxgAp91fZQoaAZHQG7JYP5HmRxoB0vWaAhHQJtGT1/Ue+51fZQoaAZHQG1qBl+Vkc1oB0veaAhHQJtGuF49ovl1fZQoaAZHQHD8txVAAyVoB0vgaAhHQJtGzTCtRvZ1fZQoaAZHQHNen71qWTpoB0vWaAhHQJtG2UyHmA91fZQoaAZHQHBc+AiFCcBoB00KAWgIR0CbRwW9US7HdX2UKGgGR0BxJXrKNhmYaAdL5mgIR0CbR56e5Fw2dX2UKGgGR0Bw2RzHS4OMaAdL1WgIR0CbR66IWP92dX2UKGgGR0Bv7L4YaYNRaAdLyWgIR0CbR/+zMRpUdX2UKGgGR0BzPu5QP7N0aAdL8GgIR0CbSPrvLHMmdX2UKGgGR0BxnB/vv0AcaAdLx2gIR0CbSb85S3spdX2UKGgGR0BxNh4TsY2saAdL0mgIR0CbSgqDK5kLdX2UKGgGR0BzEigL7XQMaAdL0WgIR0CbSgxc3VCpdX2UKGgGR0Bvvvrt3OfNaAdL22gIR0CbSk2NedCmdX2UKGgGR0BzkkQlKK51aAdL1WgIR0CbSs6unuRcdX2UKGgGR0BxE3NHH3lCaAdNDwFoCEdAm0r2Ef1YhnV9lChoBkdAcXeQHAymAWgHTQEBaAhHQJtLQ0m+j/N1fZQoaAZHQG7NH5SFXaJoB0vjaAhHQJtLzN5dGAl1fZQoaAZHQHNhonrpqypoB0vtaAhHQJtMO+Yc/+t1fZQoaAZHQHMG5uVHFxZoB0vnaAhHQJtMT1DjR2N1fZQoaAZHQHDjVVT72tdoB0v2aAhHQJtMfRfF72N1fZQoaAZHQHKG4rnTy8VoB0vQaAhHQJtMj+DOC5F1fZQoaAZHQHG4wTVUdaNoB0vXaAhHQJtM5N21Ul11fZQoaAZHQHG8MgU1yeZoB0vjaAhHQJtNvoMa0hN1fZQoaAZHQG/kR02cawVoB0viaAhHQJtPDwhGH591fZQoaAZHQHJbV7Y02tNoB0vKaAhHQJtPyBJ7LMd1fZQoaAZHQHBb6tLcsUZoB0vTaAhHQJtQC5RTCLx1fZQoaAZHQHLJ1P8AJcBoB02KAWgIR0CbUG0UoKD1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}