Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 283.97 +/- 18.83
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x793264df9900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793264df9990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x793264df9a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793264df9ab0>", "_build": "<function ActorCriticPolicy._build at 0x793264df9b40>", "forward": "<function ActorCriticPolicy.forward at 0x793264df9bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x793264df9c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793264df9cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x793264df9d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x793264df9e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793264df9ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x793264df9f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793264f91780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709880242328003259, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDeFr3PB1O8lYeTPf5Rir1QfLU9rctjPgAAgD8AAIA/zecfPXv+ibqgYM46HkuONb5O97md9e25AACAPwAAgD8zCIA8SMuFulFfiTsfp2043w2nuqrNC7kAAIA/AACAPxprLb1csze6qItnOgDelzWLubo6J5GEuQAAgD8AAIA/prCYPddTB7lu23S5jTJmtDCE4DoMv444AACAPwAAgD+a/6g89rhfuruRqrqOtjy2gIrmOoXxwzkAAIA/AACAP81cmzxId466ahCEu9WJD7cLtNU6yx+ZOgAAgD8AAIA/ZtxxvMMpA7ro6kU8GgMvtnHiVTsqsSa1AACAPwAAgD/ANbw94UaAuvCDObvgjBQ3aUh8u81gVDoAAIA/AACAP9YBrT5/JiM/8mLcvSHOkr6VNpc98Gs4vAAAAAAAAAAA2vraPbWd2z52rby9TAlovtw4ZbzDlbO7AAAAAAAAAACNzL49rmfWuHmmor0CLS285plROwJlGL0AAAAAAACAP9rPnT2PYke61qWVO1pHf7Z5HIO7bkCsugAAgD8AAAAAZsGvPI+KT7oKMJ67IEGoNqppars8YbY6AACAPwAAgD8a23g9pIAeufq9iToH9P+16WJiu6F1oLkAAIA/AACAPzMzSjvI0JY+zQh7vc9mlL5QvSy9I1TKPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUruqm0mdCMAWyUTegDjAF0lEdAkKh0DuBtlHV9lChoBkdAZeADJU5uImgHTegDaAhHQJComaMJhOR1fZQoaAZHQG9iM1TBInVoB01AA2gIR0CQqkR02cawdX2UKGgGR0BfZXK0UoKEaAdN6ANoCEdAkKxsXN1QqXV9lChoBkdAZXhfReC04WgHTegDaAhHQJCtqwJPZZl1fZQoaAZHQGKIG7z06HVoB03oA2gIR0CQrwcjZ+QVdX2UKGgGR0BkGc6DGtITaAdN6ANoCEdAkLU0PYnOSnV9lChoBkdAcDkHnlnyu2gHTUwDaAhHQJDApxIatLd1fZQoaAZHQGNnw0oBq9JoB03oA2gIR0CQxJf+S8radX2UKGgGR0Bi1bronrpraAdN6ANoCEdAkMWu6I3zc3V9lChoBkdAYVuTL4etCGgHTegDaAhHQJDMBE+gUUR1fZQoaAZHQGN9ChvitJZoB03oA2gIR0CQ4dckt29tdX2UKGgGR0BhOchib2DhaAdN6ANoCEdAkOPLBbfP5nV9lChoBkdATISr3j+72GgHS+xoCEdAkOTeb3Gn43V9lChoBkdAY74NiH6/I2gHTegDaAhHQJDumpJf6XV1fZQoaAZHQGzRT8gpz91oB00jAmgIR0CQ9NK+BYmtdX2UKGgGR0BjGXuG9HtnaAdN6ANoCEdAkPaU+X7cf3V9lChoBkdAYyFYqXnhbWgHTegDaAhHQJD2tmRNh3J1fZQoaAZHQGjE6gVXV9ZoB03oA2gIR0CQ+eW4EwFldX2UKGgGR0BcYFyaNMoMaAdN6ANoCEdAkPoEs4DLbHV9lChoBkdAZhMGJvYOD2gHTegDaAhHQJD7ld7fHgh1fZQoaAZHQF6ayYoiLVFoB03oA2gIR0CQ/YS2Yv38dX2UKGgGR0BnNht1p0wKaAdN6ANoCEdAkP6VSbYsd3V9lChoBkdAZVymqHXVb2gHTegDaAhHQJD/ocebNKR1fZQoaAZHQGfBx8c+7lJoB03oA2gIR0CRBHIcBEKFdX2UKGgGR0BkdOKwY+B6aAdN6ANoCEdAkQ/RFVktmXV9lChoBkdAbSO4tHxz72gHTZ8BaAhHQJERKkM1CPZ1fZQoaAZHQGAE9/rjYI1oB03oA2gIR0CRGBI4EOiGdX2UKGgGR0BxXOyC4BmxaAdNkAJoCEdAkSxtoWYWtXV9lChoBkdAZjrS6UaAF2gHTegDaAhHQJEuR5LRKHx1fZQoaAZHQGJ4iqQzUI9oB03oA2gIR0CRL+y6+WWydX2UKGgGR0BfL+hkAggYaAdN6ANoCEdAkTCVZPl+3HV9lChoBkdAZc1VtoBaLWgHTegDaAhHQJE36UVzp5h1fZQoaAZHQGUiJNCZ4OdoB03oA2gIR0CRPb6HCXQddX2UKGgGR0Blibgflp49aAdN6ANoCEdAkT+FhoduHnV9lChoBkdAYvdFqBVdX2gHTegDaAhHQJFDWmrKeTV1fZQoaAZHQGciry1/lQxoB03oA2gIR0CRQ4WI42jxdX2UKGgGR0BkEk8TzundaAdN6ANoCEdAkUfooNNJv3V9lChoBkdAZz/MKTjebmgHTegDaAhHQJFJZg7YChh1fZQoaAZHQGf07wSamXRoB03oA2gIR0CRSpO7xusLdX2UKGgGR0BtZArhBJI2aAdNQQJoCEdAkU/mXokiU3V9lChoBkdAYwo3CsOoYWgHTegDaAhHQJFQea6STyJ1fZQoaAZHwAuNsWO6unxoB0vvaAhHQJFRjh5xBE91fZQoaAZHQGMhZJK8L8doB03oA2gIR0CRW01UEPlNdX2UKGgGR0BlGdUOuq3maAdN6ANoCEdAkVyKEvkBCHV9lChoBkdAZBnHPu5SWWgHTegDaAhHQJFiBsenyd51fZQoaAZHQGQJKpDNQj5oB03oA2gIR0CRdy6ltTDPdX2UKGgGR0BnQtA9mpVCaAdN6ANoCEdAkXtEOEug6HV9lChoBkdAZQnQOWjXWmgHTegDaAhHQJF8BtcfNiZ1fZQoaAZHQGTf+NLlFMJoB03oA2gIR0CRg/DW9US7dX2UKGgGR0BiCUIE8q4IaAdN6ANoCEdAkYox+rlvInV9lChoBkdAYaloxHoX9GgHTegDaAhHQJGMIoQWepZ1fZQoaAZHQGbNTIvJzT5oB03oA2gIR0CRj+xLTQVsdX2UKGgGR0BmfCtDD0lJaAdN6ANoCEdAkZPVq33HrHV9lChoBkdAZJRtgrpaBGgHTegDaAhHQJGVNTR6WxB1fZQoaAZHQF+5ZUkv9LpoB03oA2gIR0CRlo3FUADJdX2UKGgGR0Bk/Kk0rK/3aAdN6ANoCEdAkZu74FiazHV9lChoBkdAZUiOYplSTGgHTegDaAhHQJGcUlv60pp1fZQoaAZHQFo9a7VawEBoB03oA2gIR0CRnXgxrSE2dX2UKGgGR0Bg4xFEy+HraAdN6ANoCEdAkanwA2hqTXV9lChoBkdAYzn01ZTya2gHTegDaAhHQJGrakLx7Rh1fZQoaAZHQG3HvgWJrL1oB01pA2gIR0CRrO5imVJMdX2UKGgGR0BhNeeDnNgSaAdN6ANoCEdAkbGXmeUY9HV9lChoBkdAZALxBE8aGmgHTegDaAhHQJHJpFjNILB1fZQoaAZHQGd6nGjsUqRoB03oA2gIR0CRynwIdELIdX2UKGgGR0Bw1Urz5GjLaAdNUwFoCEdAkdIwfU4JeHV9lChoBkdAYexTyauwHWgHTegDaAhHQJHUf0Eovzx1fZQoaAZHQHAXCB5HEuRoB00FA2gIR0CR1741xbSrdX2UKGgGR0BjVNafSQYDaAdN6ANoCEdAkdqVFDv3J3V9lChoBkdAZ6aBun/DL2gHTegDaAhHQJHcOU5dWyV1fZQoaAZHQE7meyzHCGhoB00hAWgIR0CR3Kv6j323dX2UKGgGR0BiWtiKBNEgaAdN6ANoCEdAkd899c8klnV9lChoBkdAXVzPUrkKeGgHTegDaAhHQJHic4MnZ011fZQoaAZHQF/t5wwTM7loB03oA2gIR0CR5NjtXxOMdX2UKGgGR0BiWarmyPdVaAdN6ANoCEdAkemxyjpLVXV9lChoBkdAYBz7Hhjvu2gHTegDaAhHQJHqPfpD/l11fZQoaAZHQGP61IAfdRBoB03oA2gIR0CR61w6QvHtdX2UKGgGR0ApJ14gRsdlaAdL52gIR0CR8IXlbNbDdX2UKGgGR0Bm2OkBS1mbaAdN6ANoCEdAkfSff0mMO3V9lChoBkdAY909C/oJRmgHTegDaAhHQJH3AmPYFq11fZQoaAZHQEmBdi2DxsloB00TAWgIR0CR+CMvh60IdX2UKGgGR0BjG/NgSeyzaAdN6ANoCEdAkfqSXdCVr3V9lChoBkdAYqxBbfP5YmgHTegDaAhHQJITPTSb6P91fZQoaAZHQGc7ALApKBdoB03oA2gIR0CSGSHavicYdX2UKGgGR0BkXhUtI066aAdN6ANoCEdAkhrAVGkN4XV9lChoBkdAYIfo4dZJTWgHTegDaAhHQJIdS8dxQzl1fZQoaAZHQGhaD9fkWARoB03oA2gIR0CSH+pmEoOQdX2UKGgGR0BbE0yxiXpoaAdN6ANoCEdAkiF70OEuhHV9lChoBkdAYKlxAjY7JWgHTegDaAhHQJIh8UoKD011fZQoaAZHQF+iY6nzg/FoB03oA2gIR0CSJGpgTh5xdX2UKGgGR0Bh2f3N9ph4aAdN6ANoCEdAkielZPl+3HV9lChoBkdASILxNIsiCGgHTQMBaAhHQJIqYfr8iwB1fZQoaAZHQF8BbL2YfGNoB03oA2gIR0CSL9oFV1fWdX2UKGgGR0BlZQg3cYZVaAdN6ANoCEdAkjJxOP/7znV9lChoBkdAYRTnIQvpQmgHTegDaAhHQJI45jBl+Vl1fZQoaAZHQGGFpo9LYf5oB03oA2gIR0CSPaHryDqXdX2UKGgGR0BGUgB91EE1aAdL4GgIR0CSPhkUKzAvdX2UKGgGR0Bf+NOh0yP/aAdN6ANoCEdAkkBH27FsHnV9lChoBkdAYCQ/fO2RaGgHTegDaAhHQJJBs2ZRbbF1fZQoaAZHQGM/h0IToMdoB03oA2gIR0CSRFqur6tUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781477350ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781477350d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781477350dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781477350e50>", "_build": "<function ActorCriticPolicy._build at 0x781477350ee0>", "forward": "<function ActorCriticPolicy.forward at 0x781477350f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781477351000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781477351090>", "_predict": "<function ActorCriticPolicy._predict at 0x781477351120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7814773511b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781477351240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7814773512d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7814d4f49180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709971986813441472, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNCZD3UeL8/PsSrPp6FFD0lju07utFvPQAAAAAAAAAAIB+aPixdhT+aRf8+5Zc4v8wk+z4dXhA+AAAAAAAAAABzxpA9jzZJujXNeDczn3Yy2TU/OcCljrYAAIA/AACAP81v7jz4KM881QO4vfuhk75v+rU9JNA2vgAAAAAAAAAAM+mVPOUeSj6ujzy6a82jvqT7MD0GJe48AAAAAAAAAAAzqtw9zEGjPpa+jr6ghpe+Lxowvntf+r0AAAAAAAAAAJqdMzy71IW8BsI0PZyrBL53rJC9EJY9vwAAgD8AAIA/ZvbLvFfN+z5Vs18+mf3hvnd4KD6oPPY9AAAAAAAAAACzKtM94YDXPYuPYr5JBIi+i3VQvSASETwAAAAAAAAAAHoMMb6mb1I/pwSuPnCQ7r67E+O9QNSWPgAAAAAAAAAAM7TEPOHMorrX2RW2xsQWsY8MzTpz3jk1AACAPwAAgD9mQoA89yQVPoV9Yj1BWbi+HexJPQY9gTsAAAAAAAAAAKanuz1zm44/pLmaPpSCF78mOyI+dMyrPQAAAAAAAAAAMwMSu3YJtj8U3Jm9zZwPPuoqJzsK44k8AAAAAAAAAABmhuM8SC+gulXWKzM5rzKvfhMSucqAyLMAAIA/AACAPxpXRj37Apm8bYiXvfT+O76fZfq88SXEvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsycTakASMAWyUS9iMAXSUR0CbGrY/Vy3kdX2UKGgGR0BzL1rO7g89aAdLyGgIR0CbGzGqxTsIdX2UKGgGR0BwoCFQEZBLaAdL5GgIR0CbHGS26TW5dX2UKGgGR0BxrWo0hvBKaAdL5GgIR0CbHezJIUaidX2UKGgGR0BzfB0V8CxNaAdL2mgIR0CbHhKaoddWdX2UKGgGR0BtyB1RtP56aAdL1mgIR0CbHiX6qKgqdX2UKGgGR0BwuyCkGiYcaAdNEgFoCEdAmx4lPacqfHV9lChoBkdAcP6ZkkKNQ2gHS8hoCEdAmx5FeruIAXV9lChoBkdAbqpJJ5E+gWgHS9xoCEdAmx5auSwGGHV9lChoBkdAbnSCfYjB22gHS+RoCEdAmx5Wzv7WNHV9lChoBkdAcilc9GI9DGgHTQwBaAhHQJsecJlar3l1fZQoaAZHQHAjTf779AJoB0vSaAhHQJsehzT4L1F1fZQoaAZHQHIC9XT3IuJoB0v0aAhHQJse6CJ40Mx1fZQoaAZHQHEZVVghKUVoB0vmaAhHQJsfIGIKtxN1fZQoaAZHQHElB7u2JBRoB0vvaAhHQJsgIQarFOx1fZQoaAZHQHE3/vfCQ91oB0vgaAhHQJsgbGCI1tR1fZQoaAZHQG8cmZE2HcloB0v6aAhHQJshjIGQjlh1fZQoaAZHQHPF9kJ8fFJoB0vVaAhHQJsh2L0jC551fZQoaAZHQHKdOOn2qT9oB0vUaAhHQJsjc2tMfzV1fZQoaAZHQHOCNlyzXz1oB0vMaAhHQJsjf+ZPVNJ1fZQoaAZHQFmt9YwIt19oB03oA2gIR0CbI4EE1VHXdX2UKGgGR0By7Lv2GqPwaAdLzWgIR0CbI4QswtaqdX2UKGgGR0BxxzBtUGVzaAdL1GgIR0CbI6DjR2KVdX2UKGgGR0BxK/4bjtG/aAdL3GgIR0CbI7UHIIWydX2UKGgGR0BzCdTl1bJPaAdL3WgIR0CbI70Yj0L/dX2UKGgGR0Bx1MeT3Zf2aAdL72gIR0CbI/F3IMjNdX2UKGgGR0BwQGIyj59FaAdL3mgIR0CbJI0lJHy3dX2UKGgGR0By8aGDcuanaAdL+WgIR0CbJJZ0CA+ZdX2UKGgGR0BxWUuGsV+JaAdL8GgIR0CbJMJ2MbWFdX2UKGgGR0BuqF8zAN5MaAdNHQFoCEdAmyVzmjj7ynV9lChoBkdAc0ZKP4mCy2gHS99oCEdAmzhi8vmHQHV9lChoBkdAcdGfr8iwCGgHS/BoCEdAmzh7fcer/HV9lChoBkdAcnxneizsyGgHS+loCEdAmzmQbyYoiXV9lChoBkdANnDpkf9xZWgHS69oCEdAmznYEjgQ6XV9lChoBkdAcHvVwPy08mgHS+xoCEdAmznlRxcVxnV9lChoBkdActUxh2GIsWgHS8hoCEdAmzplQIldC3V9lChoBkdAcJ/iQkona2gHS9NoCEdAmzqppFkQPXV9lChoBkdAcbxgCOmzjWgHS99oCEdAmzsrGR3eN3V9lChoBkdAcgyRjBl+VmgHS/hoCEdAmzt8J2MbWHV9lChoBkdAcojWXC0ngGgHS/doCEdAmzugla8pTnV9lChoBkdAcq4CIk7fYWgHS9NoCEdAmzvhL0z0pXV9lChoBkdAcDEIYm9g4WgHS+doCEdAmzxWbTc7AHV9lChoBkdAcQC76Hj6vmgHTRQBaAhHQJs8aesgdOt1fZQoaAZHQHECS7TUiINoB00SAWgIR0CbPKBg/keZdX2UKGgGR0BvlBH3Dej3aAdL6GgIR0CbPRO2iL2pdX2UKGgGR0ByAy6H0se5aAdL/2gIR0CbPRAbADaHdX2UKGgGR0Bv7tHhCMP0aAdL4GgIR0CbPWC4jKPodX2UKGgGR0Bwt4xL0z0paAdL6GgIR0CbPaN96TnrdX2UKGgGR0BwlRywOe8PaAdL0WgIR0CbPn0qYqoZdX2UKGgGR0Bybbl+3H7xaAdL4mgIR0CbPpcR15jZdX2UKGgGR0Bz29Ktga3raAdL1mgIR0CbP+7D2rXEdX2UKGgGR0BxEUrH2h7FaAdL8GgIR0CbQA9P1tfpdX2UKGgGR0B0H+Km8/UwaAdNIAFoCEdAm0Br1qWTo3V9lChoBkdActN9tdiUgWgHTQsBaAhHQJtAeKl54W11fZQoaAZHQHCvUpqh11ZoB0vXaAhHQJtAeJl8PWh1fZQoaAZHQHHp4R7JGONoB0voaAhHQJtAsnndO7B1fZQoaAZHQHDw++mFajhoB0vmaAhHQJtBAvlEJBx1fZQoaAZHQHDRtkvsZ51oB0vGaAhHQJtBee6I3zd1fZQoaAZHQHFYfjXFtKtoB0vsaAhHQJtBpG9YfXB1fZQoaAZHQHDojMvAXVNoB0vPaAhHQJtBsnMMZxd1fZQoaAZHQHIQ4qslsxhoB0vmaAhHQJtBuzu4PPN1fZQoaAZHQHHZ+ZXuE25oB0v/aAhHQJtB+pDNQj51fZQoaAZHQG+az0HyEtdoB0vXaAhHQJtCa51/2Cd1fZQoaAZHQHMglHvttyhoB0v4aAhHQJtC1ri2lVN1fZQoaAZHQHHRhRQ79ydoB0vbaAhHQJtDd1r6+Fl1fZQoaAZHQG/9M1jy4F1oB0vlaAhHQJtDl4FA3UB1fZQoaAZHQHNdvk3juKJoB0vaaAhHQJtEz3Fkxyp1fZQoaAZHQHGlGzjWCmNoB0vcaAhHQJtFaL9/BnB1fZQoaAZHQHFS1loUSIxoB0vdaAhHQJtFcx0uDjB1fZQoaAZHQHAWXT/hl19oB0vgaAhHQJtFfD63y7R1fZQoaAZHQG+70BGQSzxoB0vvaAhHQJtFgsNDtw91fZQoaAZHQHDfMcQyylhoB0vWaAhHQJtFjiYLLIR1fZQoaAZHQHJvTbvgFX9oB0vEaAhHQJtGEzxgAp91fZQoaAZHQG7JYP5HmRxoB0vWaAhHQJtGT1/Ue+51fZQoaAZHQG1qBl+Vkc1oB0veaAhHQJtGuF49ovl1fZQoaAZHQHD8txVAAyVoB0vgaAhHQJtGzTCtRvZ1fZQoaAZHQHNen71qWTpoB0vWaAhHQJtG2UyHmA91fZQoaAZHQHBc+AiFCcBoB00KAWgIR0CbRwW9US7HdX2UKGgGR0BxJXrKNhmYaAdL5mgIR0CbR56e5Fw2dX2UKGgGR0Bw2RzHS4OMaAdL1WgIR0CbR66IWP92dX2UKGgGR0Bv7L4YaYNRaAdLyWgIR0CbR/+zMRpUdX2UKGgGR0BzPu5QP7N0aAdL8GgIR0CbSPrvLHMmdX2UKGgGR0BxnB/vv0AcaAdLx2gIR0CbSb85S3spdX2UKGgGR0BxNh4TsY2saAdL0mgIR0CbSgqDK5kLdX2UKGgGR0BzEigL7XQMaAdL0WgIR0CbSgxc3VCpdX2UKGgGR0Bvvvrt3OfNaAdL22gIR0CbSk2NedCmdX2UKGgGR0BzkkQlKK51aAdL1WgIR0CbSs6unuRcdX2UKGgGR0BxE3NHH3lCaAdNDwFoCEdAm0r2Ef1YhnV9lChoBkdAcXeQHAymAWgHTQEBaAhHQJtLQ0m+j/N1fZQoaAZHQG7NH5SFXaJoB0vjaAhHQJtLzN5dGAl1fZQoaAZHQHNhonrpqypoB0vtaAhHQJtMO+Yc/+t1fZQoaAZHQHMG5uVHFxZoB0vnaAhHQJtMT1DjR2N1fZQoaAZHQHDjVVT72tdoB0v2aAhHQJtMfRfF72N1fZQoaAZHQHKG4rnTy8VoB0vQaAhHQJtMj+DOC5F1fZQoaAZHQHG4wTVUdaNoB0vXaAhHQJtM5N21Ul11fZQoaAZHQHG8MgU1yeZoB0vjaAhHQJtNvoMa0hN1fZQoaAZHQG/kR02cawVoB0viaAhHQJtPDwhGH591fZQoaAZHQHJbV7Y02tNoB0vKaAhHQJtPyBJ7LMd1fZQoaAZHQHBb6tLcsUZoB0vTaAhHQJtQC5RTCLx1fZQoaAZHQHLJ1P8AJcBoB02KAWgIR0CbUG0UoKD1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca39b2e356e3c198d161ebdb8d93ccef5a50de55ecc749ea69e5f320d32cab16
|
3 |
+
size 147968
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x781477350ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781477350d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781477350dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781477350e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x781477350ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x781477350f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x781477351000>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781477351090>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x781477351120>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7814773511b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781477351240>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7814773512d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7814d4f49180>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1709971986813441472,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNCZD3UeL8/PsSrPp6FFD0lju07utFvPQAAAAAAAAAAIB+aPixdhT+aRf8+5Zc4v8wk+z4dXhA+AAAAAAAAAABzxpA9jzZJujXNeDczn3Yy2TU/OcCljrYAAIA/AACAP81v7jz4KM881QO4vfuhk75v+rU9JNA2vgAAAAAAAAAAM+mVPOUeSj6ujzy6a82jvqT7MD0GJe48AAAAAAAAAAAzqtw9zEGjPpa+jr6ghpe+Lxowvntf+r0AAAAAAAAAAJqdMzy71IW8BsI0PZyrBL53rJC9EJY9vwAAgD8AAIA/ZvbLvFfN+z5Vs18+mf3hvnd4KD6oPPY9AAAAAAAAAACzKtM94YDXPYuPYr5JBIi+i3VQvSASETwAAAAAAAAAAHoMMb6mb1I/pwSuPnCQ7r67E+O9QNSWPgAAAAAAAAAAM7TEPOHMorrX2RW2xsQWsY8MzTpz3jk1AACAPwAAgD9mQoA89yQVPoV9Yj1BWbi+HexJPQY9gTsAAAAAAAAAAKanuz1zm44/pLmaPpSCF78mOyI+dMyrPQAAAAAAAAAAMwMSu3YJtj8U3Jm9zZwPPuoqJzsK44k8AAAAAAAAAABmhuM8SC+gulXWKzM5rzKvfhMSucqAyLMAAIA/AACAPxpXRj37Apm8bYiXvfT+O76fZfq88SXEvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsycTakASMAWyUS9iMAXSUR0CbGrY/Vy3kdX2UKGgGR0BzL1rO7g89aAdLyGgIR0CbGzGqxTsIdX2UKGgGR0BwoCFQEZBLaAdL5GgIR0CbHGS26TW5dX2UKGgGR0BxrWo0hvBKaAdL5GgIR0CbHezJIUaidX2UKGgGR0BzfB0V8CxNaAdL2mgIR0CbHhKaoddWdX2UKGgGR0BtyB1RtP56aAdL1mgIR0CbHiX6qKgqdX2UKGgGR0BwuyCkGiYcaAdNEgFoCEdAmx4lPacqfHV9lChoBkdAcP6ZkkKNQ2gHS8hoCEdAmx5FeruIAXV9lChoBkdAbqpJJ5E+gWgHS9xoCEdAmx5auSwGGHV9lChoBkdAbnSCfYjB22gHS+RoCEdAmx5Wzv7WNHV9lChoBkdAcilc9GI9DGgHTQwBaAhHQJsecJlar3l1fZQoaAZHQHAjTf779AJoB0vSaAhHQJsehzT4L1F1fZQoaAZHQHIC9XT3IuJoB0v0aAhHQJse6CJ40Mx1fZQoaAZHQHEZVVghKUVoB0vmaAhHQJsfIGIKtxN1fZQoaAZHQHElB7u2JBRoB0vvaAhHQJsgIQarFOx1fZQoaAZHQHE3/vfCQ91oB0vgaAhHQJsgbGCI1tR1fZQoaAZHQG8cmZE2HcloB0v6aAhHQJshjIGQjlh1fZQoaAZHQHPF9kJ8fFJoB0vVaAhHQJsh2L0jC551fZQoaAZHQHKdOOn2qT9oB0vUaAhHQJsjc2tMfzV1fZQoaAZHQHOCNlyzXz1oB0vMaAhHQJsjf+ZPVNJ1fZQoaAZHQFmt9YwIt19oB03oA2gIR0CbI4EE1VHXdX2UKGgGR0By7Lv2GqPwaAdLzWgIR0CbI4QswtaqdX2UKGgGR0BxxzBtUGVzaAdL1GgIR0CbI6DjR2KVdX2UKGgGR0BxK/4bjtG/aAdL3GgIR0CbI7UHIIWydX2UKGgGR0BzCdTl1bJPaAdL3WgIR0CbI70Yj0L/dX2UKGgGR0Bx1MeT3Zf2aAdL72gIR0CbI/F3IMjNdX2UKGgGR0BwQGIyj59FaAdL3mgIR0CbJI0lJHy3dX2UKGgGR0By8aGDcuanaAdL+WgIR0CbJJZ0CA+ZdX2UKGgGR0BxWUuGsV+JaAdL8GgIR0CbJMJ2MbWFdX2UKGgGR0BuqF8zAN5MaAdNHQFoCEdAmyVzmjj7ynV9lChoBkdAc0ZKP4mCy2gHS99oCEdAmzhi8vmHQHV9lChoBkdAcdGfr8iwCGgHS/BoCEdAmzh7fcer/HV9lChoBkdAcnxneizsyGgHS+loCEdAmzmQbyYoiXV9lChoBkdANnDpkf9xZWgHS69oCEdAmznYEjgQ6XV9lChoBkdAcHvVwPy08mgHS+xoCEdAmznlRxcVxnV9lChoBkdActUxh2GIsWgHS8hoCEdAmzplQIldC3V9lChoBkdAcJ/iQkona2gHS9NoCEdAmzqppFkQPXV9lChoBkdAcbxgCOmzjWgHS99oCEdAmzsrGR3eN3V9lChoBkdAcgyRjBl+VmgHS/hoCEdAmzt8J2MbWHV9lChoBkdAcojWXC0ngGgHS/doCEdAmzugla8pTnV9lChoBkdAcq4CIk7fYWgHS9NoCEdAmzvhL0z0pXV9lChoBkdAcDEIYm9g4WgHS+doCEdAmzxWbTc7AHV9lChoBkdAcQC76Hj6vmgHTRQBaAhHQJs8aesgdOt1fZQoaAZHQHECS7TUiINoB00SAWgIR0CbPKBg/keZdX2UKGgGR0BvlBH3Dej3aAdL6GgIR0CbPRO2iL2pdX2UKGgGR0ByAy6H0se5aAdL/2gIR0CbPRAbADaHdX2UKGgGR0Bv7tHhCMP0aAdL4GgIR0CbPWC4jKPodX2UKGgGR0Bwt4xL0z0paAdL6GgIR0CbPaN96TnrdX2UKGgGR0BwlRywOe8PaAdL0WgIR0CbPn0qYqoZdX2UKGgGR0Bybbl+3H7xaAdL4mgIR0CbPpcR15jZdX2UKGgGR0Bz29Ktga3raAdL1mgIR0CbP+7D2rXEdX2UKGgGR0BxEUrH2h7FaAdL8GgIR0CbQA9P1tfpdX2UKGgGR0B0H+Km8/UwaAdNIAFoCEdAm0Br1qWTo3V9lChoBkdActN9tdiUgWgHTQsBaAhHQJtAeKl54W11fZQoaAZHQHCvUpqh11ZoB0vXaAhHQJtAeJl8PWh1fZQoaAZHQHHp4R7JGONoB0voaAhHQJtAsnndO7B1fZQoaAZHQHDw++mFajhoB0vmaAhHQJtBAvlEJBx1fZQoaAZHQHDRtkvsZ51oB0vGaAhHQJtBee6I3zd1fZQoaAZHQHFYfjXFtKtoB0vsaAhHQJtBpG9YfXB1fZQoaAZHQHDojMvAXVNoB0vPaAhHQJtBsnMMZxd1fZQoaAZHQHIQ4qslsxhoB0vmaAhHQJtBuzu4PPN1fZQoaAZHQHHZ+ZXuE25oB0v/aAhHQJtB+pDNQj51fZQoaAZHQG+az0HyEtdoB0vXaAhHQJtCa51/2Cd1fZQoaAZHQHMglHvttyhoB0v4aAhHQJtC1ri2lVN1fZQoaAZHQHHRhRQ79ydoB0vbaAhHQJtDd1r6+Fl1fZQoaAZHQG/9M1jy4F1oB0vlaAhHQJtDl4FA3UB1fZQoaAZHQHNdvk3juKJoB0vaaAhHQJtEz3Fkxyp1fZQoaAZHQHGlGzjWCmNoB0vcaAhHQJtFaL9/BnB1fZQoaAZHQHFS1loUSIxoB0vdaAhHQJtFcx0uDjB1fZQoaAZHQHAWXT/hl19oB0vgaAhHQJtFfD63y7R1fZQoaAZHQG+70BGQSzxoB0vvaAhHQJtFgsNDtw91fZQoaAZHQHDfMcQyylhoB0vWaAhHQJtFjiYLLIR1fZQoaAZHQHJvTbvgFX9oB0vEaAhHQJtGEzxgAp91fZQoaAZHQG7JYP5HmRxoB0vWaAhHQJtGT1/Ue+51fZQoaAZHQG1qBl+Vkc1oB0veaAhHQJtGuF49ovl1fZQoaAZHQHD8txVAAyVoB0vgaAhHQJtGzTCtRvZ1fZQoaAZHQHNen71qWTpoB0vWaAhHQJtG2UyHmA91fZQoaAZHQHBc+AiFCcBoB00KAWgIR0CbRwW9US7HdX2UKGgGR0BxJXrKNhmYaAdL5mgIR0CbR56e5Fw2dX2UKGgGR0Bw2RzHS4OMaAdL1WgIR0CbR66IWP92dX2UKGgGR0Bv7L4YaYNRaAdLyWgIR0CbR/+zMRpUdX2UKGgGR0BzPu5QP7N0aAdL8GgIR0CbSPrvLHMmdX2UKGgGR0BxnB/vv0AcaAdLx2gIR0CbSb85S3spdX2UKGgGR0BxNh4TsY2saAdL0mgIR0CbSgqDK5kLdX2UKGgGR0BzEigL7XQMaAdL0WgIR0CbSgxc3VCpdX2UKGgGR0Bvvvrt3OfNaAdL22gIR0CbSk2NedCmdX2UKGgGR0BzkkQlKK51aAdL1WgIR0CbSs6unuRcdX2UKGgGR0BxE3NHH3lCaAdNDwFoCEdAm0r2Ef1YhnV9lChoBkdAcXeQHAymAWgHTQEBaAhHQJtLQ0m+j/N1fZQoaAZHQG7NH5SFXaJoB0vjaAhHQJtLzN5dGAl1fZQoaAZHQHNhonrpqypoB0vtaAhHQJtMO+Yc/+t1fZQoaAZHQHMG5uVHFxZoB0vnaAhHQJtMT1DjR2N1fZQoaAZHQHDjVVT72tdoB0v2aAhHQJtMfRfF72N1fZQoaAZHQHKG4rnTy8VoB0vQaAhHQJtMj+DOC5F1fZQoaAZHQHG4wTVUdaNoB0vXaAhHQJtM5N21Ul11fZQoaAZHQHG8MgU1yeZoB0vjaAhHQJtNvoMa0hN1fZQoaAZHQG/kR02cawVoB0viaAhHQJtPDwhGH591fZQoaAZHQHJbV7Y02tNoB0vKaAhHQJtPyBJ7LMd1fZQoaAZHQHBb6tLcsUZoB0vTaAhHQJtQC5RTCLx1fZQoaAZHQHLJ1P8AJcBoB02KAWgIR0CbUG0UoKD1dWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82cf7230947ac34e9596ea6d32d9777870147da3fe530a72fc5eb850388713cc
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:676008e185e2ec11d8b312315964f261f7a65db1819daea278b8b87ba38f373d
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 283.97082551943413, "std_reward": 18.82585407569885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-09T08:44:16.464631"}
|