Edit model card

Danish-Bert-GoÆmotion

Danish Go-Emotions classifier. Maltehb/danish-bert-botxo (uncased) finetuned on a translation of the go_emotions dataset using Helsinki-NLP/opus-mt-en-da. Thus, performance is obviousely dependent on the translation model.

Training

  • Translating the training data with MT: Notebook
  • Fine-tuning danish-bert-botxo: coming soon...

Training Parameters:

Num examples = 189900
Num Epochs = 3
Train batch = 8
Eval batch = 8
Learning Rate = 3e-5
Warmup steps = 4273
Total optimization steps = 71125

Loss

Training loss

Eval. loss

0.1178 (21100 examples)

Using the model with transformers

Easiest use with transformers and pipeline:

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

model = AutoModelForSequenceClassification.from_pretrained('RJuro/Da-HyggeBERT')
tokenizer = AutoTokenizer.from_pretrained('RJuro/Da-HyggeBERT')

classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

classifier('jeg elsker dig')

[{'label': 'kærlighed', 'score': 0.9634820818901062}]

Using the model with simpletransformers

from simpletransformers.classification import MultiLabelClassificationModel

model = MultiLabelClassificationModel('bert', 'RJuro/Da-HyggeBERT')

predictions, raw_outputs = model.predict(df['text'])
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train RJuro/Da-HyggeBERT