aashish1904's picture
Upload README.md with huggingface_hub
fb5ab01 verified
---
base_model:
- meta-llama/Meta-Llama-3.2-3B
language:
- en
- ko
library_name: transformers
license: llama3.2
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/llama-3.2-Korean-Bllossom-3B-GGUF
This is quantized version of [Bllossom/llama-3.2-Korean-Bllossom-3B](https://huggingface.co/Bllossom/llama-3.2-Korean-Bllossom-3B) created using llama.cpp
# Original Model Card
<a href="https://github.com/MLP-Lab/Bllossom">
<img src="https://github.com/teddysum/bllossom/blob/main//bllossom_icon.png?raw=true" width="30%" height="30%">
</a>
# Update!
* [2024.10.08] Bllossom-3B λͺ¨λΈμ΄ 졜초 μ—…λ°μ΄νŠΈ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
# Bllossom | [Demo]() | [Homepage](https://www.bllossom.ai/) | [Github](https://github.com/MLP-Lab/Bllossom) |
```bash
저희 Bllossom νŒ€μ—μ„œ Bllossom-3B λͺ¨λΈμ„ κ³΅κ°œν•©λ‹ˆλ‹€.
llama3.2-3Bκ°€ λ‚˜μ™”λŠ”λ° ν•œκ΅­μ–΄κ°€ 포함 μ•ˆλ˜μ—ˆλ‹€κ΅¬?? 이번 Bllossom-3BλŠ” ν•œκ΅­μ–΄κ°€ μ§€μ›λ˜μ§€ μ•ŠλŠ” κΈ°λ³Έ λͺ¨λΈμ„ ν•œκ΅­μ–΄-μ˜μ–΄λ‘œ κ°•ν™”λͺ¨λΈμž…λ‹ˆλ‹€.
- 100% full-tuning으둜 150GB의 μ •μ œλœ ν•œκ΅­μ–΄λ‘œ μΆ”κ°€ μ‚¬μ „ν•™μŠ΅ λ˜μ—ˆμŠ΅λ‹ˆλ‹€. (GPU많이 νƒœμ› μŠ΅λ‹ˆλ‹€)
- ꡉμž₯히 μ •μ œλœ Instruction Tuning을 μ§„ν–‰ν–ˆμŠ΅λ‹ˆλ‹€.
- μ˜μ–΄ μ„±λŠ₯을 μ „ν˜€ μ†μƒμ‹œν‚€μ§€ μ•Šμ€ μ™„μ „ν•œ Bilingual λͺ¨λΈμž…λ‹ˆλ‹€.
- LogicKor κΈ°μ€€ 5Bμ΄ν•˜ 졜고점수λ₯Ό κΈ°λ‘ν–ˆκ³  6점 μ΄ˆλ°˜λŒ€ 점수λ₯Ό λ³΄μž…λ‹ˆλ‹€.
- Instruction tuning만 μ§„ν–‰ν–ˆμŠ΅λ‹ˆλ‹€. DPO λ“± μ„±λŠ₯ 올릴 λ°©λ²•μœΌλ‘œ νŠœλ‹ν•΄λ³΄μ„Έμš”.
- MT-Bench, LogicKor λ“± 벀치마크 점수λ₯Ό μž˜λ°›κΈ° μœ„ν•΄ 정닡데이터λ₯Ό ν™œμš©ν•˜κ±°λ‚˜ ν˜Ήμ€ 벀치마크λ₯Ό νƒ€κ²ŸνŒ… ν•΄μ„œ ν•™μŠ΅ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. (ν•΄λ‹Ή 벀치마크 νƒ€κ²ŒνŒ…ν•΄μ„œ ν•™μŠ΅ν•˜λ©΄ 8점도 λ‚˜μ˜΅λ‹ˆλ‹€...)
μ–Έμ œλ‚˜ κ·Έλž¬λ“― ν•΄λ‹Ή λͺ¨λΈμ€ 상업적 이용이 κ°€λŠ₯ν•©λ‹ˆλ‹€.
1. Bllossom은 AAAI2024, NAACL2024, LREC-COLING2024 (ꡬ두) λ°œν‘œλ˜μ—ˆμŠ΅λ‹ˆλ‹€.
2. 쒋은 μ–Έμ–΄λͺ¨λΈ 계속 μ—…λ°μ΄νŠΈ ν•˜κ² μŠ΅λ‹ˆλ‹€!! ν•œκ΅­μ–΄ κ°•ν™”λ₯Όμœ„ν•΄ 곡동 μ—°κ΅¬ν•˜μ‹€λΆ„(νŠΉνžˆλ…Όλ¬Έ) μ–Έμ œλ“  ν™˜μ˜ν•©λ‹ˆλ‹€!!
```
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = 'Bllossom/llama-3.2-Korean-Bllossom-3B'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
instruction = "μ² μˆ˜κ°€ 20개의 연필을 가지고 μžˆμ—ˆλŠ”λ° μ˜ν¬κ°€ μ ˆλ°˜μ„ κ°€μ Έκ°€κ³  λ―Όμˆ˜κ°€ 남은 5개λ₯Ό κ°€μ Έκ°”μœΌλ©΄ μ² μˆ˜μ—κ²Œ 남은 μ—°ν•„μ˜ κ°―μˆ˜λŠ” λͺ‡κ°œμΈκ°€μš”?"
messages = [
{"role": "user", "content": f"{instruction}"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9
)
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
```
```
μ² μˆ˜κ°€ 20개의 연필을 가지고 μžˆμ—ˆκ³  μ˜ν¬κ°€ μ ˆλ°˜μ„ κ°€μ Έκ°€λ©΄, μ˜ν¬κ°€ κ°€μ Έκ°„ μ—°ν•„μ˜ κ°―μˆ˜λŠ” 20 / 2 = 10κ°œμž…λ‹ˆλ‹€.
이제 μ² μˆ˜κ°€ 남은 μ—°ν•„μ˜ 갯수λ₯Ό κ³„μ‚°ν•΄λ³΄κ² μŠ΅λ‹ˆλ‹€. μ˜ν¬κ°€ 10개λ₯Ό κ°€μ Έκ°„ ν›„ μ² μˆ˜κ°€ 남은 μ—°ν•„μ˜ κ°―μˆ˜λŠ” 20 - 10 = 10κ°œμž…λ‹ˆλ‹€.
λ―Όμˆ˜κ°€ 남은 5개λ₯Ό κ°€μ Έκ°”μœΌλ―€λ‘œ, μ² μˆ˜κ°€ 남은 μ—°ν•„μ˜ κ°―μˆ˜λŠ” 10 - 5 = 5κ°œμž…λ‹ˆλ‹€.
λ”°λΌμ„œ μ² μˆ˜κ°€ 남은 μ—°ν•„μ˜ κ°―μˆ˜λŠ” 5κ°œμž…λ‹ˆλ‹€.
```
## Supported by
- AICA <img src="https://aica-gj.kr/images/logo.png" width="20%" height="20%">
## Citation
**Language Model**
```text
@misc{bllossom,
author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
year = {2024},
journal = {LREC-COLING 2024},
paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
},
}
```
**Vision-Language Model**
```text
@misc{bllossom-V,
author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
year = {2024},
publisher = {GitHub},
journal = {NAACL 2024 findings},
paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
},
}
```
## Contact
- μž„κ²½νƒœ(KyungTae Lim), Professor at Seoultech. `[email protected]`
- ν•¨μ˜κ· (Younggyun Hahm), CEO of Teddysum. `[email protected]`
- κΉ€ν•œμƒ˜(Hansaem Kim), Professor at Yonsei. `[email protected]`
## Contributor
- **μœ ν•œκ²°(Hangyeol Yoo)**, [email protected]
- μ‹ λ™μž¬(Dongjae Shin), [email protected]
- μž„ν˜„μ„(Hyeonseok Lim), [email protected]
- μ›μΈν˜Έ(Inho Won), [email protected]
- κΉ€λ―Όμ€€(Minjun Kim), [email protected]
- μ†‘μŠΉμš°(Seungwoo Song), [email protected]
- μœ‘μ •ν›ˆ(Jeonghun Yuk), [email protected]
- 졜창수(Chansu Choi), [email protected]
- μ†‘μ„œν˜„(Seohyun Song), [email protected]