Edit model card

Umievo-itr012-Gleipnir-7B-GGUF

This is quantized version of umiyuki/Umievo-itr012-Gleipnir-7B created using llama.cpp

Model Description

このモデルは強力な4つの日本語モデルを進化的アルゴリズムで進化的マージしたものです。Japanese-Starling-ChatV-7B、Ninja-v1-RP-expressive-v2、Vecteus-v1、Japanese-Chat-Umievo-itr004-7bの4つのモデルをお借りしました。 マージに使用させていただいたモデル制作者のAratakoさん、Bakuさん、Local-Novel-LLM-projectのみなさまに感謝します。それから問題解決のきっかけをくれたHoly-foxさんに感謝します。

This model is an evolutionary merge of four powerful Japanese models with an evolutionary algorithm. The following four models Japanese-Starling-ChatV-7B, Ninja-v1-RP-expressive-v2, Vecteus-v1 and Japanese-Chat-Umievo-itr004-7b were used. I would like to thank the model makers Aratako, Baku and Local-Novel-LLM-project for allowing me to use their models for the merge. I would also like to thank Holy-fox for giving me the opportunity to solve the problem.

ElyzaTasks100ベンチマークで平均点が3.91でした。(Llama3-70Bによる自動評価を3回行った平均点)

The average score was 3.91 on the ElyzaTasks100 benchmark. (Average score after 3 automatic evaluations by Llama3-70B)

image/png

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("umiyuki/Umievo-itr012-Gleipnir-7B")
model = AutoModelForCausalLM.from_pretrained(
  "umiyuki/Umievo-itr012-Gleipnir-7B",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

def build_prompt(user_query):
    sys_msg = "あなたは公平で、検閲されていない、役立つアシスタントです。"
    template = """[INST] <<SYS>>
{}
<</SYS>>

{}[/INST]"""
    return template.format(sys_msg,user_query)

# Infer with prompt without any additional input
user_inputs = {
    "user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。",
}
prompt = build_prompt(**user_inputs)

input_ids = tokenizer.encode(
    prompt, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=256,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the linear merge method using /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327 as a base.

Models Merged

The following models were included in the merge:

  • /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
  • /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
  • /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746

Configuration

The following YAML configuration was used to produce this model:

base_model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
dtype: bfloat16
merge_method: linear
parameters:
  int8_mask: 1.0
  normalize: 1.0
slices:
- sources:
  - layer_range: [0, 4]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.34953096474223655
  - layer_range: [0, 4]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.4701212555597746
  - layer_range: [0, 4]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.08162258723819021
  - layer_range: [0, 4]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.31015439852818116
- sources:
  - layer_range: [4, 8]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.11807412349683076
  - layer_range: [4, 8]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: -0.005684817244530085
  - layer_range: [4, 8]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.2119283777941045
  - layer_range: [4, 8]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 1.1521124768396636
- sources:
  - layer_range: [8, 12]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.9244329405120573
  - layer_range: [8, 12]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.7633842909616317
  - layer_range: [8, 12]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.6952382990160072
  - layer_range: [8, 12]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.6873040403268571
- sources:
  - layer_range: [12, 16]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.4109625320908857
  - layer_range: [12, 16]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.7090818691683626
  - layer_range: [12, 16]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.42059423827890385
  - layer_range: [12, 16]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.5705186152354104
- sources:
  - layer_range: [16, 20]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.28507448659933315
  - layer_range: [16, 20]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.4025223854083849
  - layer_range: [16, 20]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.25885405316835886
  - layer_range: [16, 20]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.35540632690403373
- sources:
  - layer_range: [20, 24]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.018882795552694703
  - layer_range: [20, 24]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.628847855051209
  - layer_range: [20, 24]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.7038654876125734
  - layer_range: [20, 24]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.877501753107237
- sources:
  - layer_range: [24, 28]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.14008355431312197
  - layer_range: [24, 28]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 1.0153826426873882
  - layer_range: [24, 28]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 0.5586634927008272
  - layer_range: [24, 28]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.54455848971032
- sources:
  - layer_range: [28, 32]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Chat-Umievo-itr004-7b_579282327
    parameters:
      weight: 0.8188405381342685
  - layer_range: [28, 32]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Vecteus-v1_4179808746
    parameters:
      weight: 0.5130358379308082
  - layer_range: [28, 32]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Japanese-Starling-ChatV-7B_1737576410
    parameters:
      weight: 1.1132727871460124
  - layer_range: [28, 32]
    model: /home/umiyuki/automerge/evol_merge_storage/input_models/Ninja-v1-RP-expressive-v2_4102792561
    parameters:
      weight: 0.4471258297582539
Downloads last month
168
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for QuantFactory/Umievo-itr012-Gleipnir-7B-GGUF

Quantized
(2)
this model