|
|
|
--- |
|
|
|
license: apache-2.0 |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
|
|
- jan-hq/bagel_sft_binarized |
|
- jan-hq/dolphin_binarized |
|
- jan-hq/openhermes_binarized |
|
- jan-hq/bagel_dpo_binarized |
|
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T |
|
pipeline_tag: text-generation |
|
inference: |
|
parameters: |
|
temperature: 0.7 |
|
max_new_tokens: 40 |
|
widget: |
|
- messages: |
|
- role: user |
|
content: Tell me about NVIDIA in 20 words |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/LlamaCorn-1.1B-Chat-GGUF |
|
This is quantized version of [jan-hq/LlamaCorn-1.1B-Chat](https://huggingface.co/jan-hq/LlamaCorn-1.1B-Chat) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
<!-- header start --> |
|
<!-- 200823 --> |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto" |
|
> |
|
<img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" |
|
style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
|
|
<p align="center"> |
|
<a href="https://jan.ai/">Jan</a |
|
> |
|
- <a |
|
href="https://discord.gg/AsJ8krTT3N">Discord</a> |
|
</p> |
|
<!-- header end --> |
|
|
|
# Model description |
|
|
|
- Finetuned [TinyLlama-1.1B](TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) further for handling simple tasks and have acceptable conversational quality |
|
- Utilized high-quality opensource dataset |
|
- Can be run on [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) on consumer devices |
|
- Can fit into laptop dGPUs with as little as >=6gb of VRAM |
|
|
|
# Prompt template |
|
|
|
ChatML |
|
``` |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
|
|
``` |
|
|
|
# Run this model |
|
You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. |
|
|
|
Jan is an open source, ChatGPT alternative that is: |
|
|
|
- π» **100% offline on your machine**: Your conversations remain confidential, and visible only to you. |
|
- ποΈ ** |
|
An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. |
|
- π **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints |
|
|
|
- π **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) |
|
|
|
|
|
# About Jan |
|
Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. |
|
|
|
Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. |
|
|
|
# LlamaCorn-1.1B-Chat |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.9958 | 0.03 | 100 | 1.0003 | -0.0002 | -0.0002 | 0.4930 | -0.0001 | -180.9232 | -195.6078 | -2.6876 | -2.6924 | |
|
| 0.9299 | 1.02 | 3500 | 0.9439 | -0.1570 | -0.2195 | 0.5770 | 0.0625 | -183.1160 | -197.1755 | -2.6612 | -2.6663 | |
|
| 0.9328 | 2.01 | 6900 | 0.9313 | -0.2127 | -0.2924 | 0.5884 | 0.0798 | -183.8456 | -197.7321 | -2.6296 | -2.6352 | |
|
| 0.9321 | 2.98 | 10200 | 0.9305 | -0.2149 | -0.2955 | 0.5824 | 0.0805 | -183.8759 | -197.7545 | -2.6439 | -2.6493 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.0 |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__LlamaCorn-1.1B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |36.94| |
|
|AI2 Reasoning Challenge (25-Shot)|34.13| |
|
|HellaSwag (10-Shot) |59.33| |
|
|MMLU (5-Shot) |29.01| |
|
|TruthfulQA (0-shot) |36.78| |
|
|Winogrande (5-shot) |61.96| |
|
|GSM8k (5-shot) | 0.45| |
|
|