Pristinenlp's picture
update
ff08b6a verified
|
raw
history blame
25.4 kB
metadata
tags:
  - mteb
model-index:
  - name: alime-embedding-large-zh
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 49.6479989785073
          - type: cos_sim_spearman
            value: 54.733173049795425
          - type: euclidean_pearson
            value: 53.06330391299694
          - type: euclidean_spearman
            value: 54.73321325021156
          - type: manhattan_pearson
            value: 53.0477915350307
          - type: manhattan_spearman
            value: 54.728508847750845
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 48.658812679136325
          - type: cos_sim_spearman
            value: 55.125070901329146
          - type: euclidean_pearson
            value: 55.73373519622172
          - type: euclidean_spearman
            value: 55.12506864911728
          - type: manhattan_pearson
            value: 55.71155132206361
          - type: manhattan_spearman
            value: 55.121598723227905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.95
          - type: f1
            value: 45.34383964066362
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 62.92731050834033
          - type: cos_sim_spearman
            value: 64.8881453551134
          - type: euclidean_pearson
            value: 63.31447523186855
          - type: euclidean_spearman
            value: 64.88814189042776
          - type: manhattan_pearson
            value: 63.222442228527996
          - type: manhattan_spearman
            value: 64.79818263591122
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 42.518811360488925
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 39.72890397315954
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 86.51852576014969
          - type: mrr
            value: 89.02047619047619
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 87.11415162833914
          - type: mrr
            value: 89.6338492063492
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 24.883
          - type: map_at_10
            value: 37.246
          - type: map_at_100
            value: 39.11
          - type: map_at_1000
            value: 39.222
          - type: map_at_3
            value: 32.956
          - type: map_at_5
            value: 35.411
          - type: mrr_at_1
            value: 37.834
          - type: mrr_at_10
            value: 46.031
          - type: mrr_at_100
            value: 47.033
          - type: mrr_at_1000
            value: 47.077000000000005
          - type: mrr_at_3
            value: 43.415
          - type: mrr_at_5
            value: 44.938
          - type: ndcg_at_1
            value: 37.834
          - type: ndcg_at_10
            value: 43.928
          - type: ndcg_at_100
            value: 51.312999999999995
          - type: ndcg_at_1000
            value: 53.23
          - type: ndcg_at_3
            value: 38.397
          - type: ndcg_at_5
            value: 40.848
          - type: precision_at_1
            value: 37.834
          - type: precision_at_10
            value: 9.782
          - type: precision_at_100
            value: 1.583
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 21.664
          - type: precision_at_5
            value: 15.934000000000001
          - type: recall_at_1
            value: 24.883
          - type: recall_at_10
            value: 54.911
          - type: recall_at_100
            value: 85.419
          - type: recall_at_1000
            value: 98.16
          - type: recall_at_3
            value: 38.416
          - type: recall_at_5
            value: 45.778
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 82.5616355983163
          - type: cos_sim_ap
            value: 89.3612977679186
          - type: cos_sim_f1
            value: 83.93428161870108
          - type: cos_sim_precision
            value: 79.42404006677796
          - type: cos_sim_recall
            value: 88.98760813654431
          - type: dot_accuracy
            value: 82.5616355983163
          - type: dot_ap
            value: 89.38168095374776
          - type: dot_f1
            value: 83.93428161870108
          - type: dot_precision
            value: 79.42404006677796
          - type: dot_recall
            value: 88.98760813654431
          - type: euclidean_accuracy
            value: 82.5616355983163
          - type: euclidean_ap
            value: 89.36129603693611
          - type: euclidean_f1
            value: 83.93428161870108
          - type: euclidean_precision
            value: 79.42404006677796
          - type: euclidean_recall
            value: 88.98760813654431
          - type: manhattan_accuracy
            value: 82.42934455802767
          - type: manhattan_ap
            value: 89.36577661305246
          - type: manhattan_f1
            value: 83.94765539803707
          - type: manhattan_precision
            value: 78.66339668914776
          - type: manhattan_recall
            value: 89.99298573766659
          - type: max_accuracy
            value: 82.5616355983163
          - type: max_ap
            value: 89.38168095374776
          - type: max_f1
            value: 83.94765539803707
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 77.608
          - type: map_at_10
            value: 85.1
          - type: map_at_100
            value: 85.215
          - type: map_at_1000
            value: 85.217
          - type: map_at_3
            value: 83.97
          - type: map_at_5
            value: 84.638
          - type: mrr_at_1
            value: 77.97699999999999
          - type: mrr_at_10
            value: 85.173
          - type: mrr_at_100
            value: 85.28
          - type: mrr_at_1000
            value: 85.282
          - type: mrr_at_3
            value: 84.089
          - type: mrr_at_5
            value: 84.726
          - type: ndcg_at_1
            value: 77.871
          - type: ndcg_at_10
            value: 88.141
          - type: ndcg_at_100
            value: 88.612
          - type: ndcg_at_1000
            value: 88.68
          - type: ndcg_at_3
            value: 85.9
          - type: ndcg_at_5
            value: 87.06
          - type: precision_at_1
            value: 77.871
          - type: precision_at_10
            value: 9.841999999999999
          - type: precision_at_100
            value: 1.005
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 30.698999999999998
          - type: precision_at_5
            value: 19.009
          - type: recall_at_1
            value: 77.608
          - type: recall_at_10
            value: 97.418
          - type: recall_at_100
            value: 99.473
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 91.307
          - type: recall_at_5
            value: 94.125
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.104
          - type: map_at_10
            value: 78.62
          - type: map_at_100
            value: 81.417
          - type: map_at_1000
            value: 81.46600000000001
          - type: map_at_3
            value: 55.077
          - type: map_at_5
            value: 69.18900000000001
          - type: mrr_at_1
            value: 90.55
          - type: mrr_at_10
            value: 93.42200000000001
          - type: mrr_at_100
            value: 93.46900000000001
          - type: mrr_at_1000
            value: 93.472
          - type: mrr_at_3
            value: 93.108
          - type: mrr_at_5
            value: 93.318
          - type: ndcg_at_1
            value: 90.55
          - type: ndcg_at_10
            value: 86.227
          - type: ndcg_at_100
            value: 89.201
          - type: ndcg_at_1000
            value: 89.655
          - type: ndcg_at_3
            value: 85.89099999999999
          - type: ndcg_at_5
            value: 84.443
          - type: precision_at_1
            value: 90.55
          - type: precision_at_10
            value: 40.915
          - type: precision_at_100
            value: 4.749
          - type: precision_at_1000
            value: 0.486
          - type: precision_at_3
            value: 76.9
          - type: precision_at_5
            value: 64.56
          - type: recall_at_1
            value: 26.104
          - type: recall_at_10
            value: 86.924
          - type: recall_at_100
            value: 96.52
          - type: recall_at_1000
            value: 98.83800000000001
          - type: recall_at_3
            value: 57.196999999999996
          - type: recall_at_5
            value: 73.595
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 51.9
          - type: map_at_10
            value: 62.446
          - type: map_at_100
            value: 62.922
          - type: map_at_1000
            value: 62.934999999999995
          - type: map_at_3
            value: 59.933
          - type: map_at_5
            value: 61.548
          - type: mrr_at_1
            value: 51.9
          - type: mrr_at_10
            value: 62.446
          - type: mrr_at_100
            value: 62.922
          - type: mrr_at_1000
            value: 62.934999999999995
          - type: mrr_at_3
            value: 59.933
          - type: mrr_at_5
            value: 61.548
          - type: ndcg_at_1
            value: 51.9
          - type: ndcg_at_10
            value: 67.561
          - type: ndcg_at_100
            value: 69.87400000000001
          - type: ndcg_at_1000
            value: 70.19800000000001
          - type: ndcg_at_3
            value: 62.474
          - type: ndcg_at_5
            value: 65.391
          - type: precision_at_1
            value: 51.9
          - type: precision_at_10
            value: 8.36
          - type: precision_at_100
            value: 0.9440000000000001
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 23.267
          - type: precision_at_5
            value: 15.379999999999999
          - type: recall_at_1
            value: 51.9
          - type: recall_at_10
            value: 83.6
          - type: recall_at_100
            value: 94.39999999999999
          - type: recall_at_1000
            value: 96.89999999999999
          - type: recall_at_3
            value: 69.8
          - type: recall_at_5
            value: 76.9
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 49.672951135051946
          - type: f1
            value: 38.246634605142084
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.52908067542214
          - type: ap
            value: 55.415146961759135
          - type: f1
            value: 81.38343036361825
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 70.15572724302896
          - type: cos_sim_spearman
            value: 75.11630463239744
          - type: euclidean_pearson
            value: 74.2927184018677
          - type: euclidean_spearman
            value: 75.11630463089752
          - type: manhattan_pearson
            value: 74.27724224882166
          - type: manhattan_spearman
            value: 75.10012699894408
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 30.62934327678744
          - type: mrr
            value: 29.48730158730159
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 65.33
          - type: map_at_10
            value: 74.524
          - type: map_at_100
            value: 74.851
          - type: map_at_1000
            value: 74.86500000000001
          - type: map_at_3
            value: 72.748
          - type: map_at_5
            value: 73.896
          - type: mrr_at_1
            value: 67.593
          - type: mrr_at_10
            value: 75.19
          - type: mrr_at_100
            value: 75.472
          - type: mrr_at_1000
            value: 75.484
          - type: mrr_at_3
            value: 73.634
          - type: mrr_at_5
            value: 74.638
          - type: ndcg_at_1
            value: 67.593
          - type: ndcg_at_10
            value: 78.254
          - type: ndcg_at_100
            value: 79.727
          - type: ndcg_at_1000
            value: 80.09100000000001
          - type: ndcg_at_3
            value: 74.892
          - type: ndcg_at_5
            value: 76.835
          - type: precision_at_1
            value: 67.593
          - type: precision_at_10
            value: 9.46
          - type: precision_at_100
            value: 1.02
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.227999999999998
          - type: precision_at_5
            value: 17.965999999999998
          - type: recall_at_1
            value: 65.33
          - type: recall_at_10
            value: 89.048
          - type: recall_at_100
            value: 95.732
          - type: recall_at_1000
            value: 98.598
          - type: recall_at_3
            value: 80.209
          - type: recall_at_5
            value: 84.824
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 73.38937457969065
          - type: f1
            value: 70.87692475465195
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.04236718224612
          - type: f1
            value: 75.52425703483891
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 53.1
          - type: map_at_10
            value: 60.24
          - type: map_at_100
            value: 60.781
          - type: map_at_1000
            value: 60.81999999999999
          - type: map_at_3
            value: 58.733000000000004
          - type: map_at_5
            value: 59.618
          - type: mrr_at_1
            value: 53
          - type: mrr_at_10
            value: 60.195
          - type: mrr_at_100
            value: 60.736000000000004
          - type: mrr_at_1000
            value: 60.775
          - type: mrr_at_3
            value: 58.68299999999999
          - type: mrr_at_5
            value: 59.573
          - type: ndcg_at_1
            value: 53.1
          - type: ndcg_at_10
            value: 63.568999999999996
          - type: ndcg_at_100
            value: 66.401
          - type: ndcg_at_1000
            value: 67.597
          - type: ndcg_at_3
            value: 60.455000000000005
          - type: ndcg_at_5
            value: 62.05500000000001
          - type: precision_at_1
            value: 53.1
          - type: precision_at_10
            value: 7.3999999999999995
          - type: precision_at_100
            value: 0.877
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.8
          - type: precision_at_5
            value: 13.86
          - type: recall_at_1
            value: 53.1
          - type: recall_at_10
            value: 74
          - type: recall_at_100
            value: 87.7
          - type: recall_at_1000
            value: 97.39999999999999
          - type: recall_at_3
            value: 65.4
          - type: recall_at_5
            value: 69.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 76.40333333333332
          - type: f1
            value: 76.40924131087777
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 77.15213860314023
          - type: cos_sim_ap
            value: 79.30594584166899
          - type: cos_sim_f1
            value: 80.25889967637539
          - type: cos_sim_precision
            value: 71.38157894736842
          - type: cos_sim_recall
            value: 91.65786694825766
          - type: dot_accuracy
            value: 77.15213860314023
          - type: dot_ap
            value: 79.30594584166899
          - type: dot_f1
            value: 80.25889967637539
          - type: dot_precision
            value: 71.38157894736842
          - type: dot_recall
            value: 91.65786694825766
          - type: euclidean_accuracy
            value: 77.15213860314023
          - type: euclidean_ap
            value: 79.30594584166899
          - type: euclidean_f1
            value: 80.25889967637539
          - type: euclidean_precision
            value: 71.38157894736842
          - type: euclidean_recall
            value: 91.65786694825766
          - type: manhattan_accuracy
            value: 77.36870600974554
          - type: manhattan_ap
            value: 79.23401219102254
          - type: manhattan_f1
            value: 80.44901777362021
          - type: manhattan_precision
            value: 72.20822837951302
          - type: manhattan_recall
            value: 90.8130939809926
          - type: max_accuracy
            value: 77.36870600974554
          - type: max_ap
            value: 79.30594584166899
          - type: max_f1
            value: 80.44901777362021
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 92.6
          - type: ap
            value: 90.78779333103819
          - type: f1
            value: 92.59253441654515
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 34.4442917065113
          - type: cos_sim_spearman
            value: 37.93070836936766
          - type: euclidean_pearson
            value: 38.35141108502335
          - type: euclidean_spearman
            value: 37.936378767247106
          - type: manhattan_pearson
            value: 38.357078125497566
          - type: manhattan_spearman
            value: 37.94413026678537
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 32.84777948741198
          - type: cos_sim_spearman
            value: 34.212129449696285
          - type: euclidean_pearson
            value: 32.69161407750465
          - type: euclidean_spearman
            value: 34.21178008084197
          - type: manhattan_pearson
            value: 32.675418316752506
          - type: manhattan_spearman
            value: 34.178590557249
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.65903821549742
          - type: cos_sim_spearman
            value: 64.54376284777354
          - type: euclidean_pearson
            value: 63.70022677799055
          - type: euclidean_spearman
            value: 64.54376284777354
          - type: manhattan_pearson
            value: 64.46392290759724
          - type: manhattan_spearman
            value: 65.2496975447815
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 80.05773088991484
          - type: cos_sim_spearman
            value: 80.71550237522008
          - type: euclidean_pearson
            value: 80.31115977415573
          - type: euclidean_spearman
            value: 80.71510951779365
          - type: manhattan_pearson
            value: 80.25235514937249
          - type: manhattan_spearman
            value: 80.65958309383224
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.18255262304848
          - type: mrr
            value: 75.95393252087565
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 28.651
          - type: map_at_10
            value: 76.281
          - type: map_at_100
            value: 80.018
          - type: map_at_1000
            value: 80.098
          - type: map_at_3
            value: 54.783
          - type: map_at_5
            value: 66.508
          - type: mrr_at_1
            value: 90.99199999999999
          - type: mrr_at_10
            value: 93.812
          - type: mrr_at_100
            value: 93.87100000000001
          - type: mrr_at_1000
            value: 93.87299999999999
          - type: mrr_at_3
            value: 93.415
          - type: mrr_at_5
            value: 93.685
          - type: ndcg_at_1
            value: 90.99199999999999
          - type: ndcg_at_10
            value: 84.57900000000001
          - type: ndcg_at_100
            value: 88.474
          - type: ndcg_at_1000
            value: 89.172
          - type: ndcg_at_3
            value: 86.56099999999999
          - type: ndcg_at_5
            value: 84.811
          - type: precision_at_1
            value: 90.99199999999999
          - type: precision_at_10
            value: 40.969
          - type: precision_at_100
            value: 4.97
          - type: precision_at_1000
            value: 0.515
          - type: precision_at_3
            value: 74.734
          - type: precision_at_5
            value: 61.980999999999995
          - type: recall_at_1
            value: 28.651
          - type: recall_at_10
            value: 83.321
          - type: recall_at_100
            value: 95.498
          - type: recall_at_1000
            value: 98.759
          - type: recall_at_3
            value: 56.708000000000006
          - type: recall_at_5
            value: 70.25200000000001
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 52.037
          - type: f1
            value: 50.3832093595745
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 70.09793315196697
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 63.66930246094367
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 60.4
          - type: map_at_10
            value: 69.878
          - type: map_at_100
            value: 70.285
          - type: map_at_1000
            value: 70.295
          - type: map_at_3
            value: 68.033
          - type: map_at_5
            value: 69.233
          - type: mrr_at_1
            value: 60.3
          - type: mrr_at_10
            value: 69.828
          - type: mrr_at_100
            value: 70.235
          - type: mrr_at_1000
            value: 70.245
          - type: mrr_at_3
            value: 67.983
          - type: mrr_at_5
            value: 69.18299999999999
          - type: ndcg_at_1
            value: 60.4
          - type: ndcg_at_10
            value: 74.155
          - type: ndcg_at_100
            value: 76.173
          - type: ndcg_at_1000
            value: 76.44800000000001
          - type: ndcg_at_3
            value: 70.44500000000001
          - type: ndcg_at_5
            value: 72.61800000000001
          - type: precision_at_1
            value: 60.4
          - type: precision_at_10
            value: 8.74
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.8
          - type: precision_at_5
            value: 16.54
          - type: recall_at_1
            value: 60.4
          - type: recall_at_10
            value: 87.4
          - type: recall_at_100
            value: 96.89999999999999
          - type: recall_at_1000
            value: 99.1
          - type: recall_at_3
            value: 77.4
          - type: recall_at_5
            value: 82.69999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 88.49000000000001
          - type: ap
            value: 73.5441395538586
          - type: f1
            value: 86.88114969870975

alime-embedding-large-zh

The alime embedding model.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["西湖在哪?", "西湖风景名胜区位于浙江省杭州市"]

model = SentenceTransformer('Pristinenlp/alime-embedding-large-zh')
embeddings = model.encode(sentences, normalize_embeddings=True)
print(embeddings)