Edit model card

wangchanberta-ud-thai-pud-upos

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0442
  • Macro avg precision: 0.9221
  • Macro avg recall: 0.9178
  • Macro avg f1: 0.9199
  • Weighted avg precision: 0.9883
  • Weighted avg recall: 0.9883
  • Weighted avg f1: 0.9883
  • Accuracy: 0.9883

Model description

This model is train on thai UD Thai PUD corpus with Universal Part-of-speech (UPOS) tag to help with pos tagging in Thai language.

Example

from transformers import AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline

model = AutoModelForTokenClassification.from_pretrained("Pavarissy/wangchanberta-ud-thai-pud-upos")
tokenizer = AutoTokenizer.from_pretrained("Pavarissy/wangchanberta-ud-thai-pud-upos")

pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer, grouped_entities=True)
outputs = pipeline("ประเทศไทย อยู่ใน ทวีป เอเชีย")
print(outputs)
# [{'entity_group': 'NOUN', 'score': 0.419697, 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'PROPN', 'score': 0.8809489, 'word': 'ประเทศไทย', 'start': 0, 'end': 9}, {'entity_group': 'VERB', 'score': 0.7754166, 'word': 'อยู่ใน', 'start': 9, 'end': 16}, {'entity_group': 'NOUN', 'score': 0.9976932, 'word': 'ทวีป', 'start': 16, 'end': 21}, {'entity_group': 'PROPN', 'score': 0.97770107, 'word': 'เอเชีย', 'start': 21, 'end': 28}]

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Macro avg precision Macro avg recall Macro avg f1 Weighted avg precision Weighted avg recall Weighted avg f1 Accuracy
No log 1.0 125 0.5563 0.8103 0.7235 0.7552 0.8574 0.8522 0.8495 0.8522
No log 2.0 250 0.2316 0.8701 0.8460 0.8564 0.9320 0.9315 0.9310 0.9315
No log 3.0 375 0.1635 0.8903 0.8729 0.8809 0.9511 0.9511 0.9508 0.9511
0.5782 4.0 500 0.1112 0.9037 0.8964 0.8998 0.9687 0.9685 0.9685 0.9685
0.5782 5.0 625 0.0860 0.9110 0.9050 0.9079 0.9752 0.9752 0.9751 0.9752
0.5782 6.0 750 0.0675 0.9160 0.9103 0.9131 0.9815 0.9814 0.9814 0.9814
0.5782 7.0 875 0.0588 0.9189 0.9138 0.9163 0.9839 0.9839 0.9839 0.9839
0.1073 8.0 1000 0.0514 0.9214 0.9155 0.9184 0.9858 0.9858 0.9858 0.9858
0.1073 9.0 1125 0.0463 0.9225 0.9171 0.9197 0.9877 0.9876 0.9876 0.9876
0.1073 10.0 1250 0.0442 0.9221 0.9178 0.9199 0.9883 0.9883 0.9883 0.9883

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
49
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Pavarissy/wangchanberta-ud-thai-pud-upos

Finetuned
(37)
this model

Dataset used to train Pavarissy/wangchanberta-ud-thai-pud-upos

Collection including Pavarissy/wangchanberta-ud-thai-pud-upos

Evaluation results